Kim BE, Nevitt T, Thiele DJ. Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol. 2008. https://doi.org/10.1038/nchembio.72.
Article
PubMed
PubMed Central
Google Scholar
Leeson S. Copper metabolism and dietary needs. Worlds Poult Sci J. 2009. https://doi.org/10.1017/S0043933909000269.
Article
Google Scholar
Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011. https://doi.org/10.1089/ars.2011.3999.
Article
PubMed
PubMed Central
Google Scholar
Jegede AV, Oduguwa OO, Bamgbose AM, Fanimo AO, Nollet L. Growth response, blood characteristics and copper accumulation in organs of broilers fed on diets supplemented with organic and inorganic dietary copper sources. Br Poult Sci. 2011. https://doi.org/10.1080/00071668.2010.544714.
Article
PubMed
Google Scholar
Gaetke LM, Chow-Johnson HS, Chow CK. Copper: toxicological relevance and mechanisms. Arch Toxikol. 2014. https://doi.org/10.1007/s00204-014-1355-y.
Article
Google Scholar
Prohaska JR, Downing SW, Lukasewycz OA. Chronic dietary copper deficiency alters biochemical and morphological properties of mouse lymphoid tissues. J Nutr. 1983. https://doi.org/10.1093/jn/113.8.1583.
Article
PubMed
Google Scholar
Lukasewycz OA, Prohaska JR, Meyer SG, Schmidtke JR, Hatfield SM, Marder P. Alterations in lymphocyte subpopulations in copper-deficient mice. Infect Immun. 1985. https://doi.org/10.1128/IAI.48.3.644-647.1985.
Article
PubMed
PubMed Central
Google Scholar
Lukasewycz OA, Prohaska JR. The immune response in copper deficiency. Ann N Y Acad Sci. 1990. https://doi.org/10.1111/j.1749-6632.1990.tb00142.x.
Article
PubMed
Google Scholar
Tomaszewska E, Dobrowolski P, Kwiecień M, Winiarska-Mieczan A, Tomczyk A, Muszyński S. The influence of the dietary cu-glycine complex on the histomorphology of cancellous bone, articular cartilage, and growth plate as well as bone mechanical and geometric parameters is dose dependent. Biol Trace Elem Res. 2017. https://doi.org/10.1007/s12011-016-0894-x.
Article
PubMed
PubMed Central
Google Scholar
Muszyński S, Tomaszewska E, Kwiecień M, Dobrowolski P, Tomczyk A. Effect of dietary phytase supplementation on bone and hyaline cartilage development of broilers fed with organically complexed copper in a Cu-deficient diet. Biol Trace Elem Res. 2018. https://doi.org/10.1007/s12011-017-1092-1.
Article
PubMed
Google Scholar
National Research Council. Nutrient Requirements of Poultry. 9th ed. Washington, DC: National Academies Press; 1994.
Google Scholar
McNaughton JL, Day EJ. Effect of dietary Fe to Cu rations on hematological and growth responses of broilers chickens. J Nutr. 1979;109:559–64.
Article
CAS
Google Scholar
Henry PR, Ammeman CB, Miles RD. Relative bioavailability of manganese in a manganese-methionine complex for broiler chicks. Poult Sci. 1989. https://doi.org/10.3382/ps.0680107.
Article
PubMed
Google Scholar
Aoyagi S, Baker DH. Bioavailability of Cu in analytical-grade and feed-grade inorganic Cu sources when fed to provide Cu at levels below the chick’s requirements. Poult Sci. 1993. https://doi.org/10.3382/ps.0721075.
Article
PubMed
Google Scholar
Edwards HM III, Baker DH. Bioavailability of zinc in several sources of zinc oxide, zinc sulfate, and zinc metal. J Anim Sci. 1999. https://doi.org/10.2527/1999.77102730x.
Article
PubMed
Google Scholar
De Marco M, Zoon MV, Margetyal C, Picart C, Ionescu C. Dietary administration of glycine complexed trace minerals can improve performance and slaughter yield in broilers and reduces mineral excretion. Anim Feed Sci Technol. 2017. https://doi.org/10.1016/j.anifeedsci.2017.08.016.
Article
Google Scholar
Pang Y, Applegate TJ. Effects of copper source and concentration on in vitro phytate phosphorus hydrolysis by phytase. J Agric Food Chem. 2006. https://doi.org/10.1021/jf052053b.
Article
PubMed
Google Scholar
Yu Y, Lu L, Wang RL, Xi L, Luo XG, Liu B. Effects of zinc source and phytate on zinc absorption by in situ ligated intestinal loops of broilers. Poult Sci. 2010. https://doi.org/10.3382/ps.2009-00486.
Article
PubMed
Google Scholar
Scott A, Vadalasetty KP, Sawosz E, Łukasiewicz M, Vadalasetty RKP, Jaworski S, et al. Effect of copper nanoparticles and copper sulphate on metabolic rate and development of broiler embryos. Anim Feed Sci Technol. 2016. https://doi.org/10.1016/j.anifeedsci.2016.08.009.
Article
Google Scholar
Zhao J, Shirley RB, Dibner JJ, Wedekind KJ, Yan F, Fisher P, et al. Superior growth performance in broiler chicks fed chelated compared to inorganic zinc in presence of elevated dietary copper. J Anim Sci Biotechnol. 2016. https://doi.org/10.1186/s40104-016-0072-1.
Article
PubMed
PubMed Central
Google Scholar
Su R, Wang R, Guo S, Cao H, Pan J, Li C, et al. In vitro effect of copper chloride exposure on reactive oxygen species generation and respiratory chain complex activities of mitochondria isolated from broiler liver. Biol Trace Elem Res. 2011. https://doi.org/10.1007/s12011-011-9039-4.
Article
PubMed
Google Scholar
Wang Y, Zhao H, Shao Y, Liu J, Li J, Luo L, et al. Copper (II) and/or arsenite-induced oxidative stress cascades apoptosis and autophagy in the skeletal muscles of chicken. Chemosphere. 2018. https://doi.org/10.1016/j.chemosphere.2018.05.013.
Article
PubMed
PubMed Central
Google Scholar
Ji F, Luo XG, Lu L, Liu B, Yu SX. Effect of manganese source on manganese absorption by the intestine of broilers. Poult Sci. 2006. https://doi.org/10.1093/ps/85.11.1947.
Article
PubMed
Google Scholar
Brown TF, Zeringue K. Laboratory evaluations of solubility and structural integrity of complexed and chelated trace mineral supplements. J Dairy Sci. 1994. https://doi.org/10.3168/jds.S0022-0302(94)76940-X.
Article
PubMed
Google Scholar
Yan F, Waldroup PW. Evaluation of MINTREX® manganese as a source of manganese for young broilers. Int J Poult Sci. 2006. https://doi.org/10.3923/ijps.2006.708.713.
Article
Google Scholar
Wang Z, Cerrate S, Coto C, Yan F, Waldroup PW. Evaluation of Mintrex copper as a source of copper in broiler diets. Int J Poult Sci. 2007. https://doi.org/10.3923/ijps.2007.308.313.
Article
Google Scholar
Jarosz TS, Marek A, Grądzki Z, Kwiecień M, Kaczmarek B. The effect of feed supplementation with a copper-glycine chelate and copper sulphate on selected humoral and cell-mediated immune parameters, plasma superoxide dismutase activity, ceruloplasmin and cytokine concentration in broiler chickens. J Anim Physiol Anim Nutr. 2017. https://doi.org/10.1111/jpn.12750.
Article
Google Scholar
Wu X, Dai S, Hua J, Hu H, Wang S, Wen A. Influence of dietary copper methionine concentrations on growth performance, digestibility of nutrients, serum lipid profiles, and immune defenses in broilers. Biol Trace Elem Res. 2019. https://doi.org/10.1007/s12011-018-1594-5.
Article
PubMed
PubMed Central
Google Scholar
Wang B, Liu Y, Feng L, Jiang WD, Kuang SY, Jiang J, et al. Effects of dietary arginine supplementation on growth performance, flesh quality, muscle antioxidant capacity and antioxidant-related signalling molecule expression in young grass carp (Ctenopharyngodon idella). Food Chem. 2015. https://doi.org/10.1016/j.foodchem.2014.06.091.
Article
PubMed
Google Scholar
Lei L, Xiaoyi S, Fuchang L. Effect of dietary copper addition on lipid metabolism in rabbits. Food Nutr Res. 2017. https://doi.org/10.1080/16546628.2017.1348866.
Article
PubMed
PubMed Central
Google Scholar
Pant K, Saraya A, Venugopal SK. Oxidative stress plays a key role in butyrate-mediated autophagy via Akt/mTOR pathway in hepatoma cells. Chem Biol Interact. 2017. https://doi.org/10.1016/j.cbi.2017.06.001.
Article
PubMed
Google Scholar
Wen A, Dai S, Wu X, Cai Z. Copper bioavailability, mineral utilization, and lipid metabolism in broilers. Czech J Anim Sci. 2019. https://doi.org/10.17221/210/2019-CJAS.
Article
Google Scholar
El-Ghalid H, El Ashry G, Soliman S, El-hady M. Effect of dietary sources and levels of copper supplementation on growth performance, blood parameters and slaughter traits of broiler chickens. Egypt Pout Sci. 2019;39:897–912.
Article
Google Scholar
Wu X, Zhu M, Jiang Q, Wang L. Effects of copper sources and levels on lipid profiles, immune parameters, antioxidant defenses, and trace element residues in broilers. Biol Trace Elem Res. 2020. https://doi.org/10.1007/s12011-019-01753-z.
Article
PubMed
Google Scholar
Nguyen HTT, Morgan N, Roberts JR, Swick RA, Toghyani M. Copper hydroxychloride is more efficacious than copper sulfate in improving broiler chicken’s growth performance, both at nutritional and growth-promoting levels. Poult Sci. 2020. https://doi.org/10.1016/j.psj.2020.09.053.
Article
PubMed
PubMed Central
Google Scholar
Hu Y, Chen Z, Lu L, Zhang L, Liu T, Luo X, Liao X. Determination of dietary copper requirement by the monoamine oxidase activity in kidney of broilers from 1 to 21 days of age. Anim Nutr. 2022. https://doi.org/10.1016/j.aninu.2021.05.013.
Article
PubMed
PubMed Central
Google Scholar
Attia YA, Qota EM, Zeweil HS, Bovera F, Abd Al-Hamid AE, Sahledom MD. Effect of different dietary concentrations of inorganic and organic copper on growth performance and lipid metabolism of White Pekin male ducks. Br Poult Sci. 2012. https://doi.org/10.1080/00071668.2011.650151.
Article
CAS
PubMed
Google Scholar
Das TK, Mondal MK, Biswas P, Bairagi B, Samanta CC. Influence of level of dietary inorganic and organic copper and energy level on the performance and nutrient utilization of broiler chickens. Asian-australas J Anim Sci. 2009. https://doi.org/10.5713/ajas.2010.60150.
Article
Google Scholar
Luo XG, Ji F, Lin YX, Steward FA, Lu L, Liu B, Yu SX. Effects of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and oxidation stability of vitamin E in feed. Poult Sci. 2005. https://doi.org/10.1093/ps/84.6.888.
Article
PubMed
Google Scholar
Hamdi M, Solà D, Franco R, Durosoy S, Roméo A, Pérez JF. Including copper sulphate or dicopper oxide in the diet of broiler chickens affects performance and copper content in the liver. Anim Feed Sci Technol. 2018. https://doi.org/10.1016/j.anifeedsci.2018.01.014.
Article
Google Scholar
Olukosi OA, van Kuijk S, Han Y. Copper and zinc sources and levels of zinc inclusion influence growth performance, tissue trace mineral content, and carcass yield of broiler chickens. Poult Sci. 2018. https://doi.org/10.3382/ps/pey247.
Article
PubMed
PubMed Central
Google Scholar
Yang F, Cao H, Su R, Guo J, Li C, Pan J, et al. Liver mitochondrial dysfunction and electron transport chain defect induced by high dietary copper in broilers. Poult Sci. 2017. https://doi.org/10.3382/ps/pex137.
Article
CAS
PubMed
Google Scholar
Adegbenjo AA, Idowu OMO, Oso AO, Adeyemi OA, Sobayo RA, Akinloye OA, et al. Effects of dietary supplementation with copper sulphate and copper proteinate on plasma trace minerals, copper residues in meat tissue, organs, excreta and tibia bone of cockerels. In: National Agricultural and Food Centre – Research, editor. Slovak Journal Animal Science. Lužianky: Institute for Animal Production Nitra; 2014. p. 164–171.
Rodríguez JP, Rios S, González M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem. 2002. https://doi.org/10.1002/jcb.10111.
Article
PubMed
Google Scholar
Hunt CD. Copper and boron as examples of dietary trace elements important in bone development and disease. Curr Opin Orthop. 1998;9:28–36.
Article
Google Scholar
Attia YA, Abdalah AA, Zeweil HS, Bovera F, Tag El-Din AA, Araft MA. Effect of inorganic or organic copper additions on reproductive performance, lipid metabolism and morphology of organs of dual-purpose breeding hens. Archiv Für Geflügelkunde. 2011;75(3):S.169–178.
Google Scholar
Sandoval M, Henry PR, Ammerman CB, Miles RD, Littell RC. Relative bioavailability of supplemental inorganic zinc sources for chicks. J Anim Sci. 1997. https://doi.org/10.2527/1997.75123195x.
Article
PubMed
Google Scholar
Cao J, Henry PR, Guo R, Howerda RA, Toth JP, Littell RC, et al. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. J Anim Sci. 2000. https://doi.org/10.2527/2000.7882039x.
Article
PubMed
Google Scholar
Persson H, Turk M, Nyman M, Sandberg AS. Binding of Cu2+, Zn2+, and Cd2+ to inositol tri-, tetra-, penta-, and hexaphosphates. J Agric Food Chem. 1998. https://doi.org/10.1021/jf971055w.
Article
Google Scholar
Banks KM, Thompson KL, Jaynes P, Applegate TJ. The effects of copper on the efficacy of phytase, growth, and phosphorus retention in Broiler Chicks. Poult Sci. 2004. https://doi.org/10.1093/ps/83.8.1335.
Article
CAS
PubMed
Google Scholar
Manangi MK, Vazquez-Anon M, Richards JD, Carter S, Buresh RE, Christensen KD. Impact of feeding lower levels of chelated trace minerals versus industry levels of inorganic trace minerals on broiler performance, yield, footpad health, and litter mineral concentration. J Appl Poult Res. 2012. https://doi.org/10.3382/japr.2012-00531.
Article
Google Scholar
Wolinsky I, Klimis-Tavantzis DJ, Richards LJ. Manganese and bone metabolism. In: Klimis-Tavantzis DJ, editor. Manganese in Health and Disease. Boca Raton: CRC Press; 1994. p. 115–20.
Google Scholar
Conly AK, Poureslami R, Koutsos EA, Batal AB, Jung B, Beckstead R, et al. Tolerance and efficacy of tribasic manganese chloride in growing broiler chickens. Poult Sci. 2012. https://doi.org/10.3382/ps.2011-02056.
Article
PubMed
Google Scholar
Plaas AH, Wong-Palms S, Roughley PJ, Midura RJ, Hascall VC. Chemical and immunological assay of the nonreducing terminal residues of chondroitin sulfate from human aggrecan. J Biol Chem. 1997. https://doi.org/10.1074/jbc.272.33.20603.
Article
PubMed
Google Scholar
Welch KD, Hall JO, Davis TZ, Aust SD. The effect of copper deficiency on the formation of hemosiderin in sprague-dawley rats. Biometals. 2007. https://doi.org/10.1007/s10534-006-9046-7.
Article
PubMed
Google Scholar
Collins JF, Prohaska JR, Knutson MD. Metabolic crossroads of iron and copper. Nutr Rev. 2010. https://doi.org/10.1111/j.1753-4887.2010.00271.x.
Article
PubMed
Google Scholar
Kozłowski K, Jankowski J, Otowski K, Zduńczyk Z, Ognik K. Metabolic parameters in young turkeys fed diets with different inclusion levels of copper nanoparticles. Pol J Vet Sci. 2018. https://doi.org/10.24425/119043.
Article
PubMed
Google Scholar
Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013. https://doi.org/10.1111/febs.12253.
Article
PubMed
Google Scholar
Zhou N, Lee WR, Abasht B. Messenger RNA sequencing and pathway analysis provide novel insights into the biological basis of chickens’ feed efficiency. BMC Genomics. 2015. https://doi.org/10.1186/s12864-015-1364-0.
Article
PubMed
PubMed Central
Google Scholar
Wang G, Zhang T, Sun W, Wang H, Yin F, Wang Z, et al. Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma. Free Radic Biol Med. 2017. https://doi.org/10.1016/j.freeradbiomed.2017.02.015.
Article
PubMed
PubMed Central
Google Scholar
Yang F, Liao J, Pei R, Yu W, Han Q, Li Y, et al. Autophagy attenuates copper-induced mitochondrial dysfunction by regulating oxidative stress in chicken hepatocytes. Chemosphere. 2018. https://doi.org/10.1016/j.chemosphere.2018.03.192.
Article
PubMed
Google Scholar
Liao J, Yang F, Yu W, Qiao N, Zhanga H, Hana Q, et al. Copper induces energy metabolic dysfunction and AMPK-mTOR pathway-mediated autophagy in kidney of broiler chickens. Ecotoxicol Environ Saf. 2020. https://doi.org/10.1016/j.ecoenv.2020.111366.
Article
PubMed
Google Scholar
Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle. 2011. https://doi.org/10.1186/2044-5040-1-4.
Article
PubMed
PubMed Central
Google Scholar
Busato KC, Gomes RA, Ladeira MM, Duarte MS, Freitas NC, Rodrigues AC, et al. Expression of genes related to the regulation of muscle protein turnover in Angus and Nellore bulls. J Anim Sci. 2016. https://doi.org/10.2527/jas.2015-9924.
Article
PubMed
Google Scholar
Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev. 1985. https://doi.org/10.1152/physrev.1985.65.2.238.
Article
PubMed
Google Scholar
Arredondo M, Uauy R, González M. Regulation of copper uptake and transport in intestinal cell monolayers by acute and chronic copper exposure. Biochim Biophys Acta. 2000. https://doi.org/10.1016/s0304-4165(00)00015-5.
Article
PubMed
Google Scholar
Sone T K, Yamaoka K, Minami Y, Tsunoo H. Induction of metallothionein synthesis in Menkes’ and normal lymphoblastoid cells is controlled by the level of intracellular copper. J Biol Chem. 1987;262:5878–85.
Article
CAS
Google Scholar
Mehra RK, Bremner I. Species differences in the occurrence of copper-metallothionein in the particulate fractions of the liver of copper-loaded animals. Biochem J. 1984. https://doi.org/10.1042/bj2190539.
Article
PubMed
PubMed Central
Google Scholar
Bauerly KA, Kelleher SL, Lönnerdal B. Effects of copper supplementation on copper absorption, tissue distribution, and copper transporter expression in an infant rat model. Am J Physiol Gastrointest Liver Physiol. 2005. https://doi.org/10.1152/ajpgi.00210.2004.
Article
PubMed
Google Scholar
Fry RS, Ashwell MS, Lloyd KE, O’Nan AT, Flowers WL, Stewart KR, et al. Amount and source of dietary copper affects small intestine morphology, duodenal lipid peroxidation, hepatic oxidative stress, and mRNA expression of hepatic copper regulatory proteins in weanling pigs. J Anim Sci. 2012. https://doi.org/10.2527/jas.2011-4403.
Article
PubMed
Google Scholar
Cousins RJ, Liuzzi J. Trace Metal Absorption and Transport. In: Said H, editor. Physiology of the Gastrointestinal Tract. Irvine: Elsevier; 2018. p. 1485–98.
Chapter
Google Scholar
Nose Y, Kim BE, Thiele DJ. Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab. 2006. https://doi.org/10.1016/j.cmet.2006.08.009.
Article
PubMed
Google Scholar
Lee J, Peña MMO, Nose Y, Thiele DJ. Biochemical characterization of the human copper transporter Ctr1. J Biol Chem. 2002. https://doi.org/10.1074/jbc.M104728200.
Article
PubMed
Google Scholar
Zhang H, Wu X, Mehmood K, Chang Z, Li K, Jiang X, et al. Intestinal epithelial cell injury induced by copper containing nanoparticles in piglets. Environ Toxicol Pharmacol. 2017. https://doi.org/10.1016/j.etap.2017.09.010.
Article
PubMed
Google Scholar
Huang YL, Ashwell MS, Fry RS, Lloyd KE, Flowers WL, Spears JW. Effect of dietary copper amount and source on copper metabolism and oxidative stress of weanling pigs in short-term feeding. J Anim Sci. 2015. https://doi.org/10.2527/jas.2014-8082.
Article
PubMed
Google Scholar
Hatori Y, Lutsenko S. The Role of Copper Chaperone Atox1 in Coupling Redox Homeostasis to Intracellular Copper Distribution. Antioxidants. 2016. https://doi.org/10.3390/antiox5030025.
Article
PubMed
PubMed Central
Google Scholar
Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine. 5th ed. New York: Oxford University Press; 2015.
Book
Google Scholar
Lin W, Stayton I, Huang Y, Zhou XD, Ma Y. Cytotoxicity and cell membrane depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549. Toxicol Environ Chem. 2008. https://doi.org/10.1080/02772240701802559.
Article
Google Scholar
Makarski B, Gortat M. Effect of supplementation with copper in different chemical forms on selected physiological blood markers and content of minerals In selected tissues of turkeys. J Elem. 2011. https://doi.org/10.5601/jelem.2011.16.4.08.
Article
Google Scholar
Pourahmad J, O’Brien PJ, Jokar F, Daraei B. Carcinogenic metal induced sites of reactive oxygen species formation in hepatocytes. Toxicol In Vitro. 2003. https://doi.org/10.1016/S0887-2333(03)00123-1.
Article
PubMed
Google Scholar
Sandrini JZ, Bianchini A, Trindade GS, Nery LEM, Marins LFF. Reactive oxygen species generation and expression of DNA repair-related genes after copper exposure in zebrafish (Danio rerio) ZFL cells. Aquat Toxicol. 2009. https://doi.org/10.1016/j.aquatox.2009.02.016.
Article
PubMed
Google Scholar
Thupari JN, Pinn ML, Kuhajda FP. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity. Biochem Biophys Res Commun. 2001. https://doi.org/10.1006/bbrc.2001.5146.
Article
PubMed
Google Scholar
Konjufca VH, Pesti GM, Bakalli RI. Modulation of Cholesterol Levels in Broiler Meat by Dietary Garlic and Copper. Poult Sci. 1997. https://doi.org/10.1093/ps/76.9.1264.
Article
PubMed
Google Scholar
Anderson LA, McTernan PG, Harte AL, Barnett AH, Kumar S. The regulation of HSL and LPL expression by DHT and flutamide in human subcutaneous adipose tissue. Diabetes Obes Metab. 2002. https://doi.org/10.1046/j.1463-1326.2002.00214.x.
Article
PubMed
Google Scholar
Borensztajn J. Heart and skeletal muscle lipoprotein lipase. In: Borensztain J, editor. Lipoprotein Lipase. Chicago: Evener Publishers; 1987. p. 133–48.
Google Scholar
Horwitz W, Latimer GW. Official methods of analysis of AOAC International. 14th ed. Rockville: Association of Official Analytical Chemists; 2005.
Cobb-Vantress (2013) Breeder Management Supplement. https://www.cobb-vantress.com/.
Rostagno HS, Albino LFT, Hannas MI, Donzele JL, Sakomura NK, Perazo FG. Brazilian tables for poultry and swine. 4th ed. Viçosa: Universidade Federal de Viçosa; 2017.
Google Scholar
Walsh DM, Kennedy DG, Goodall EA, Kennedy S. Antioxidant enzyme activity in the muscles of calves depleted of vitamin E or selenium or both. Br J Nutr. 1993. https://doi.org/10.1079/BJN19930153.
Article
PubMed
Google Scholar
Beuge JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymology. 1978. https://doi.org/10.1016/s0076-6879(78)52032-6.
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001. https://doi.org/10.1006/meth.2001.1262.
Article
PubMed
Google Scholar
Box GE, Hunter JS, Hunter WG. Statistics for Experimenters: Design, Innovation, and Discovery. 2nd ed. New Jersey: Wiley-Interscience; 2005.
Google Scholar
SAS/STAT User's guide statistics, Version 9.2. Cary, NC, USA: SAS Inst. Inc.; 2008.