NRC. Nutrient Requirements of Fish and Shrimp. Washingt DC: Natl Acad Press; 2011. p. 102–34. and 186–220
Google Scholar
Hanche-Olsen R, Brunvold L, Hillestad M, Lysne H, Penn M, Løland A. Sluttrapport: Nedsatt Tarmhelse Og Forekomst Av Flytefeces Hos Laks (In Norwegian). 2013. https://www.fhf.no/prosjektdetaljer/?projectNumber=900722. Accessed 14 Mar 2019.
Google Scholar
Penn M. Lipid malabsorption in Atlantic Salmon – the recurring problem of floating feces; 2011. p. 6–11. https://docplayer.me/3098420-Nov-2011-tarmhelse-fiskehelse.html
Google Scholar
Elvis M, Chikwati YL, Wang J, Zhou W, Hage E, Præsteng K, Kortner TM, Torres AJ, Gajardo K, Løkka G, Aru V, Khakimov B, Engelsen SB, Bjørgen H, Koppang EO, Gerd AK. Gut health monitoring during the seawater phase of farmed Atlantic salmon in different production regions of Norway – the GutMatters project. In: 8th International Symposium on Aquatic Animal Health; 2018.
Google Scholar
Dias J, Alvarez MJ, Arzel J, Corraze G, Diez A, Bautista JM, et al. Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol. 2005;142:19–31. https://doi.org/10.1016/j.cbpb.2005.07.005.
Article
CAS
PubMed
Google Scholar
Kaushik SJ, Seiliez I. Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquac Res. 2010;41:322–32. https://doi.org/10.1111/j.1365-2109.2009.02174.x.
Article
CAS
Google Scholar
Torstensen BE, Espe M, Stubhaug I, Lie Ø. Dietary plant proteins and vegetable oil blends increase adiposity and plasma lipids in Atlantic salmon (Salmo salar L.). Br J Nutr. 2011;106:633–47. https://doi.org/10.1017/S0007114511000729.
Article
CAS
PubMed
Google Scholar
Gu M, Kortner TM, Penn M, Hansen AK. Effects of dietary plant meal and soya-saponin supplementation on intestinal and hepatic lipid droplet accumulation and lipoprotein and sterol metabolism in Atlantic salmon (Salmo salar L.). Br J Nutr. 2014;111:432–44.
Article
CAS
PubMed
Google Scholar
Olsen RE, Myklebust R, Ringø E, Mayhew TM. The influences of dietary linseed oil and saturated fatty acids on caecal enterocytes in Arctic char (Salvelinus alpinus L.): a quantitative ultrastructural study. Fish Physiol Biochem. 2000;22:207–16.
Article
CAS
Google Scholar
Olsen RE, Dragnes BT, Myklebust R, Ringø E. Effect of soybean oil and soybean lecithin on intestinal lipid composition and lipid droplet accumulation of rainbow trout, Oncorhynchus mykiss Walbaum. Fish Physiol Biochem. 2003;29:181–92.
Article
CAS
Google Scholar
Santigosa E, García-Meilán I, Valentín JM, Navarro I, Pérez-Sánchez J, Gallardo MÁ. Plant oils’ inclusion in high fish meal-substituted diets: effect on digestion and nutrient absorption in gilthead sea bream (Sparus aurata L.). Aquac Res. 2011;42:962–74. https://doi.org/10.1111/j.1365-2109.2010.02679.x.
Article
CAS
Google Scholar
Jordal AO, Torstensen BE, Tsoi S, Tocher DR, Lall SP, Douglas SE. Nutrient-Gene Interactions Dietary Rapeseed Oil Affects the Expression of Genes Involved in Hepatic Lipid Metabolism in Atlantic Salmon (Salmo salar L.). J Nutr. 2005;135:2355–61.
Article
CAS
PubMed
Google Scholar
Kennedy SR, Bickerdike R, Berge RK, Dick JR, Tocher DR. Influence of conjugated linoleic acid (CLA) or tetradecylthioacetic acid (TTA) on growth, lipid composition, fatty acid metabolism and lipid gene expression of rainbow trout (Oncorhynchus mykiss L.). Aquaculture. 2007;272:489–501. https://doi.org/10.1016/j.aquaculture.2007.06.033.
Article
CAS
Google Scholar
Trattner S, Ruyter B, Østbye TK, Gjøen T, Zlabek V, Kamal-Eldin A, et al. Sesamin increases alpha-linolenic acid conversion to docosahexaenoic acid in atlantic salmon (Salmo salar L.) hepatocytes: role of altered gene expression. Lipids. 2008;43:999–1008. https://doi.org/10.1007/s11745-008-3229-7.
Article
CAS
PubMed
Google Scholar
Kjær MA, Todorcević M, Torstensen BE, Vegusdal A, Ruyter B. Dietary n-3 HUFA affects mitochondrial fatty acid beta-oxidation capacity and susceptibility to oxidative stress in Atlantic salmon. Lipids. 2008;43:813–27. https://doi.org/10.1007/s11745-008-3208-z.
Article
PubMed
Google Scholar
Torstensen BE, Nanton DA, Olsvik PA, Sundvold H, Stubhaug I. Gene expression of fatty acid-binding proteins, fatty acid transport proteins (cd36 and FATP) and β-oxidation-related genes in Atlantic salmon (Salmo salar L.) fed fish oil or vegetable oil. Aquac Nutr. 2009;15:440–51. https://doi.org/10.1111/j.1365-2095.2008.00609.x.
Article
CAS
Google Scholar
Alves Martins D, Rocha F, Martínez-Rodríguez G, Bell G, Morais S, Castanheira F, et al. Teleost fish larvae adapt to dietary arachidonic acid supply through modulation of the expression of lipid metabolism and stress response genes. Br J Nutr. 2012;108:864–74. https://doi.org/10.1017/S0007114511006143.
Article
CAS
PubMed
Google Scholar
Figueiredo-Silva AC, Kaushik S, Terrier F, Schrama JW, Médale F, Geurden I. Link between lipid metabolism and voluntary food intake in rainbow trout fed coconut oil rich in medium-chain TAG. Br J Nutr. 2012;107:1714–25. https://doi.org/10.1017/S0007114511004739.
Article
CAS
PubMed
Google Scholar
Zuo R, Ai Q, Mai K, Xu W. Effects of conjugated linoleic acid on growth, non-specific immunity, antioxidant capacity, lipid deposition and related gene expression in juvenile large yellow croaker (Larmichthys crocea) fed soyabean oil-based diets. Br J Nutr. 2013;110:1220–32. https://doi.org/10.1017/S0007114513000378.
Article
CAS
PubMed
Google Scholar
Coccia E, Varricchio E, Vito P, Turchini GM, Francis DS, Paolucci M. Fatty acid-specific alterations in Leptin, PPARα, and CPT-1 gene expression in the rainbow trout. Lipids. 2014;49:1033–46. https://doi.org/10.1007/s11745-014-3939-y.
Article
CAS
PubMed
Google Scholar
De Santis C, Taylor JF, Martinez-Rubio L, Boltana S, Tocher DR. Influence of development and dietary phospholipid content and composition on intestinal transcriptome of Atlantic salmon (Salmo salar). PLoS One. 2015;10:1–16. https://doi.org/10.1371/journal.pone.0140964.
Article
CAS
Google Scholar
Fontagne S, Geurden I, Escaffre A, Bergot P. Histological changes induced by dietary phospholipids in intestine and liver of common carp (Cyprinus carpio L.) larvae. Aquaculture. 1998;161:213–23.
Article
CAS
Google Scholar
Geurden I, Bergot P, Schwarz L, Sorgeloos P. Relationship between dietary phospholipid classes and neutral lipid absorption in newly-weaned turbot, Scophthalmus maximus. Fish Physiol Biochem. 1998;19:217–28.
Article
CAS
Google Scholar
Salhi M, Hernández-Cruz C, Bessonart M, Izquierdo M, Fernández-Palacios H. Effect of different dietary polar lipid levels and different n−3 HUFA content in polar lipids on gut and liver histological structure of gilthead seabream (Sparus aurata) larvae. Aquaculture. 1999;179:253–63.
Article
CAS
Google Scholar
Hadas E, Koven W, Sklan D, Tandler A. The effect of dietary phosphatidylcholine on the assimilation and distribution of ingested free oleic acid (18:1 n-9) in gilthead seabream (Sparus aurata) larvae. Aquaculture. 2003;217:577–88.
Article
CAS
Google Scholar
Koven WM, Kolkovski S, Tandler A, Kissil GW, Sklan D. The effect of dietary lecithin and lipase, as a function of age, on n-9 fatty acid incorporation in the tissue lipids of Sparus aurata larvae. Fish Physiol Biochem. 1993;10:357–64. https://doi.org/10.1007/BF00004502.
Article
CAS
PubMed
Google Scholar
Daprà F, Geurden I, Corraze G, Bazin D, Zambonino-Infante J-L, Fontagné-Dicharry S. Physiological and molecular responses to dietary phospholipids vary between fry and early juvenile stages of rainbow trout (Oncorhynchus mykiss). Aquaculture. 2011;319:377–84. https://doi.org/10.1016/j.aquaculture.2011.07.016.
Article
CAS
Google Scholar
Gibellini F, Smith TK. The Kennedy pathway--De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 2010;62:414–28. https://doi.org/10.1002/iub.337.
Article
CAS
PubMed
Google Scholar
Li Z, Vance DE. Phosphatidylcholine and choline homeostasis. J Lipid Res. 2008;49:1187–94. https://doi.org/10.1194/jlr.%20R700019-JLR200.
Article
CAS
PubMed
Google Scholar
Ketola HG. Choline metabolism and nutritional requirement of lake trout (Salvelinus namaycush). J Anim Sci. 1976;43:474–7.
Article
CAS
PubMed
Google Scholar
Rumsey GL. Choline-betaine requirements of rainbow trout (Oncorhynchus mykiss). Aquaculture. 1991;95:107–16. https://doi.org/10.1016/0044-8486(91)90077-K.
Article
CAS
Google Scholar
Duan Y, Zhu X, Han D, Yang Y, Xie S. Dietary choline requirement in slight methionine-deficient diet for juvenile gibel carp (Carassius auratus gibelio). Aquac Nutr. 2012;18:620–7. https://doi.org/10.1111/j.1365-2095.2011.00930.x.
Article
CAS
Google Scholar
Arai S, Nose T, Hashimoto Y. Qualitative requirements of young eels, Anguilla japonica, for water-soluble vitamins and their deficiency symptoms. Bull Freshw Res Lab. 1972;22:69–83.
Google Scholar
Poston HA. Effect of body size on growth, survival, and chemical composition of Atlantic Salmon fed soy lecithin and choline. Progress Fish-Culturist. 1990;52:226–30. https://doi.org/10.1577/1548-8640(1990)052<0226:EOBSOG>2.3.CO;2.
Article
Google Scholar
Griffin ME, Wilson KA, White MR, Brown PB. Dietary choline requirement of juvenile hybrid striped bass. J Nutr. 1994;124:1685–9 http://europepmc.org/abstract/MED/8089736. Accessed 28 Nov 2014.
Article
CAS
PubMed
Google Scholar
Shiau S-Y, Lo P-S. Research communication dietary choline requirements of juvenile hybrid Tilapia, Oreochromis niloticus x O aureus. J Nutr. 2000;130:100–3.
Article
CAS
PubMed
Google Scholar
Hung SSO, Berge GM, Storebakken T. Growth and digestibility effects of soya lecithin and choline chloride on juvenile Atlantic salmon. Aquac Nutr. 1997;3:141–4. https://doi.org/10.1046/j.1365-2095.1997.00080.x.
Article
CAS
Google Scholar
Wu P, Feng L, Kuang S-Y, Liu Y, Jiang J, Hu K, et al. Effect of dietary choline on growth, intestinal enzyme activities and relative expressions of target of rapamycin and eIF4E-binding protein2 gene in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture. 2011;317:107–16. https://doi.org/10.1016/j.aquaculture.2011.03.042.
Article
CAS
Google Scholar
Niu J, Liu YJ, Tian LX, Mai KS, Yang HJ, Ye CX, et al. Effects of dietary phospholipid level in cobia (Rachycentron canadum) larvae: growth, survival, plasma lipids and enzymes of lipid metabolism. Fish Physiol Biochem. 2008;34:9–17. https://doi.org/10.1007/s10695-007-9140-y.
Article
CAS
PubMed
Google Scholar
Tocher DR, Bendiksen EÅ, Campbell PJ, Bell JG. The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture. 2008;280:21–34. https://doi.org/10.1016/j.aquaculture.2008.04.034.
Article
CAS
Google Scholar
Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S, Heger K, et al. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:Phosphocholine cytidylyltransferase. Cell Metab. 2011;14:504–15. https://doi.org/10.1016/j.cmet.2011.07.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olsen RE, Myklebust R, Kaino T, Ringø E. Lipid digestibility and ultrastructural changes in the enterocytes of Arctic char (Salvelinus alpinus L .) fed linseed oil and soybean lecithin. Fish Physiol Biochem. 1999;21:35–44.
Article
CAS
Google Scholar
Taylor JF, Martinez-Rubio L, del Pozo J, Walton JM, Tinch AE, Migaud H, et al. Influence of dietary phospholipid on early development and performance of Atlantic salmon (Salmo salar). Aquaculture. 2015;448:262–72. https://doi.org/10.1016/j.aquaculture.2015.06.012.
Article
CAS
Google Scholar
Li JY, Li XF, Xu WN, Zhang CN, Liu WB. Effects of dietary choline supplementation on growth performance, lipid deposition and intestinal enzyme activities of blunt snout bream Megalobrama amblycephal fed high-lipid diet. Aquac Nutr. 2016;22:181–90.
Article
CAS
Google Scholar
Cornell RB, Ridgway ND. CTP:phosphocholine cytidylyltransferase: function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Prog Lipid Res. 2015;59:147–71. https://doi.org/10.1016/j.plipres.2015.07.001.
Article
CAS
PubMed
Google Scholar
Jia L, Betters JL, Yu L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu Rev Physiol. 2011;73:239–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown M, Yu L. Opposing gatekeepers of apical sterol transport: Niemann-pick C1-like (NPC1L1) and ATP-binding cassette transporters G5 and G8 (ABCG5/ABCG8). Immunol Endocr Metab Agents Med Chem. NIH Public Access. 2009;9:18–29.
Caballero MJ, Gallardo G, Robaina L, Montero D, Fernández A, Izquierdo M. Vegetable lipid sources in vitro biosyntheis of triacylglycerols and phospholipids in the intestine of sea bream (Sparus aurata). Br J Nutr. 2007;95:448. https://doi.org/10.1079/BJN20051529.
Article
CAS
Google Scholar
Lagakos WS, Guan X, Ho S-Y, Sawicki LR, Corsico B, Kodukula S, et al. Liver fatty acid-binding protein binds monoacylglycerol in vitro and in mouse liver cytosol. J Biol Chem. 2013;288:19805–15. https://doi.org/10.1074/jbc.%20M113.473579.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li K. Phospholipids in Atlantic cod (Gadus morhua L .) larvae rearing: Incorporation of DHA in live feed and larval phospholipids and the metabolic capabilities. Norwegian University Of Science and Technology; 2015.
Google Scholar
Kamalam BS, Panserat S, Aguirre P, Geurden I, Fontagné-Dicharry S, Médale F. Selection for high muscle fat in rainbow trout induces potentially higher chylomicron synthesis and PUFA biosynthesis in the intestine. Comp Biochem Physiol A Mol Integr Physiol. 2013;164:417–27. https://doi.org/10.1016/j.cbpa.2012.11.020.
Article
CAS
PubMed
Google Scholar
Fontagne S, Burtaire L, Corraze G, Bergot P. Effects of dietary medium-chain triacylglycerols (tricaprylin and tricaproin) and phospholipid supply on survival , growth and lipid metabolism in common carp (Cyprinus carpio L .) larvae. Aquaculture. 2000;190:289–303.
Article
CAS
Google Scholar
da Silva RP, Kelly KB, Lewis ED, Leonard KA, Goruk S, Curtis JM, et al. Choline deficiency impairs intestinal lipid metabolism in the lactating rat. J Nutr Biochem. 2015;26:1077–83. https://doi.org/10.1016/j.jnutbio.2015.04.015.
Article
CAS
PubMed
Google Scholar
Lee B, Zhu J, Wolins NE, Cheng J-X, Buhman KK. Differential association of adipophilin and TIP47 proteins with cytoplasmic lipid droplets in mouse enterocytes during dietary fat absorption. Biochim Biophys Acta. 1791;2009:1173–80. https://doi.org/10.1016/j.bbalip.2009.08.002.
Article
CAS
Google Scholar
Straub BK, Gyoengyoesi B, Koenig M, Hashani M, Pawella LM, Herpel E, et al. Adipophilin/perilipin-2 as a lipid droplet-specific marker for metabolically active cells and diseases associated with metabolic dysregulation. Histopathology. 2013;62:617–31. https://doi.org/10.1111/his.12038.
Article
PubMed
Google Scholar
Li Y, Kortner TM, Chikwati EM, Munang’andu HM, Lock EJ, Krogdahl Å. Gut health and vaccination response in pre-smolt Atlantic salmon (Salmo salar) fed black soldier fly (Hermetia illucens) larvae meal. Fish Shellfish Immunol. 2019;86:1106–13. https://doi.org/10.1016/j.fsi.2018.12.057.
Article
CAS
PubMed
Google Scholar
Craig SR, Gatlin DM. Growth and body composition of juvenile red drum (Sciaenops ocektus) fed diets containing lecithin and supplemental choline. Aquaculture. 1997;151:259–67.
Article
CAS
Google Scholar
Ogino C, Uki N, Watanabe T, Iida Z, Ando K. B vitamin requirements of carp. 4. Requirement for choline. Bull Japanese Soc Sci Fish. 1970;36:1140–6 http://www.cabdirect.org/abstracts/19721406454.html. Accessed 25 Nov 2014.
Article
CAS
Google Scholar
Jiang GZ, Wang M, Liu WB, Li GF, Qian Y. Dietary choline requirement for juvenile blunt snout bream, Megalobrama amblycephala. Aquac Nutr. 2013;19:499–505.
Article
CAS
Google Scholar
Li J, Zhang D, Xu W, Jiang G, Zhang C, Li X, et al. Effects of dietary choline supplementation on growth performance and hepatic lipid transport in blunt snout bream (Megalobrama amblycephala) fed high-fat diets. Aquaculture. 2014;434:340–7. https://doi.org/10.1016/j.aquaculture.2014.08.006.
Article
CAS
Google Scholar
Fisher EA, Ginsberg HN. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem. 2002;277:17377–80.
Article
CAS
PubMed
Google Scholar
Fisher EA, Pan M, Chen X, Wu X, Wang H, Jamil H, et al. The triple threat to nascent apolipoprotein B: evidence for multiple, distinct degradative pathways. J Biol Chem. 2001;276:27855–63.
Article
CAS
PubMed
Google Scholar
Olofsson SO, Stillemark-Billton P, Asp L. Intracellular assembly of VLDL: two major steps in separate cell compartments. Trends Cardiovasc Med. 2000;10:338–45.
Article
CAS
PubMed
Google Scholar
Tocher DR, Glencross BD. Lipids and fatty acids. In: Dietary nutrients, additives, and fish health; 2015. p. 47–94.
Chapter
Google Scholar
D'Abramo LRD, Bordner CE, Conklin DE. Relationship between dietary Phosphatidylcholine and serum cholesterol in the lobster Homarus sp. Mar Biol. 1982;235:231–5.
Article
CAS
Google Scholar
Kortner TM, Björkhem I, Krasnov A, Timmerhaus G, Krogdahl A. Dietary cholesterol supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic salmon (Salmo salar L.). Br J Nutr. 2014;111:2089–103. https://doi.org/10.1017/S0007114514000373.
Article
CAS
PubMed
Google Scholar
Kortner TM, Penn MH, Bjӧrkhem I, Måsøval K, Krogdahl Å. Bile components and lecithin supplemented to plant based diets do not diminish diet related intestinal inflammation in Atlantic salmon. BMC Vet Res. 2016;12:1–12. https://doi.org/10.1186/s12917-016-0819-0.
Article
CAS
Google Scholar
Chimsung N, Lall SP, Tantikitti C, Verlhac-Trichet V, Milley JE. Effects of dietary cholesterol on astaxanthin transport in plasma of Atlantic salmon (Salmo salar). Comp Biochem Physiol B Biochem Mol Biol. 2013;165:73–81. https://doi.org/10.1016/j.cbpb.2013.02.007.
Article
CAS
PubMed
Google Scholar
Fournier N, de la Llera MM, Burkey BF, Swaney JB, Paterniti J, Moatti N, et al. Role of HDL phospholipid in efflux of cell cholesterol to whole serum: studies with human apoA-I transgenic rats. J Lipid Res. 1996;37:1704–11 http://www.ncbi.nlm.nih.gov/pubmed/8864954.
CAS
PubMed
Google Scholar
Austreng E. Digestibility determination in fish using chromic oxide marking and analysis of contents from different segments of the gastrointestinal tract. Aquaculture. 1978;13:266–72.
Article
Google Scholar
Krasnov A, Timmerhaus G, Afanasyev S, Jørgensen SM. Development and assessment of oligonucleotide microarrays for Atlantic salmon (Salmo salar L.). Comp Biochem Physiol Part D Genomics Proteomics. 2011;6:31–8. https://doi.org/10.1016/j.cbd.2010.04.006.
Article
CAS
PubMed
Google Scholar
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22. https://doi.org/10.1373/clinchem.2008.112797.
Article
CAS
PubMed
Google Scholar
Kortner TM, Valen EC, Kortner H, Marjara IS, Krogdahl Å, Bakke AM. Candidate reference genes for quantitative real-time PCR (qPCR) assays during development of a diet-related enteropathy in Atlantic salmon (Salmo salar L.) and the potential pitfalls of uncritical use of normalization software tools. Aquaculture. 2011;318:355–63. https://doi.org/10.1016/j.aquaculture.2011.05.038.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Refstie S, Helland SJ, Storebakken T. Adaptation to soybean meal in diets for rainbow trout, Oncorhynchus mykiss. Aquaculture. 1997;153:263–72. https://doi.org/10.1016/S0044-8486(97)00025-2.
Article
Google Scholar
Parini P, Johansson L, Bröijersén A, Angelin B, Rudling M. Lipoprotein profiles in plasma and interstitial fluid analyzed with an automated gel-filtration system. Eur J Clin Investig. 2006;36:98–104. https://doi.org/10.1111/j.1365-2362.2006.01597.x.
Article
CAS
Google Scholar
Lund E, Sisfontes L, Reihner E, Bjorkhem I. Determination of serum levels of unesterified lathosterol by isotope dilution-mass spectrometry. Scand J Clin Lab Invest. 1989;49:165–71 http://informahealthcare.com/doi/abs/10.3109/00365518909105417. Accessed 27 Nov 2014.
Article
CAS
PubMed
Google Scholar
Lövgren-Sandblom A, Heverin M, Larsson H, Lundström E, Wahren J, Diczfalusy U, et al. Novel LC-MS/MS method for assay of 7alpha-hydroxy-4-cholesten-3-one in human plasma. Evidence for a significant extrahepatic metabolism. J Chromatogr B. 2007;856:15–9. https://doi.org/10.1016/j.jchromb.2007.05.019.
Article
CAS
Google Scholar
Dzeletovic S, Breuer O, Lund E, Diczfalusy U. Determination of cholesterol oxidation products in human plasma by isotop dilution-mass spectrometry. Anal Biochem. 1995;225:73–80.
Article
CAS
PubMed
Google Scholar
Acimovic J, Lövgren-Sandblom A, Monostory K, Rozman D, Golicnik M, Lutjohann D, et al. Combined gas chromatographic/mass spectrometric analysis of cholesterol precursors and plant sterols in cultured cells. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:2081–6. https://doi.org/10.1016/j.jchromb.2009.05.050.
Article
CAS
PubMed
Google Scholar
Folch J, Lees M, Stanley S. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–507.
CAS
PubMed
Google Scholar
Austreng E, Storebakken T, Thomassen MS, Refstie S, Thomassen Y. Evaluation of selected trivalent metal oxides as inert markers used to estimate apparent digestibility in salmonids. Aquaculture. 2000;188:65–78. https://doi.org/10.1016/S0044-8486(00)00336-7.
Article
CAS
Google Scholar