Bullo M, Garcia-Lorda P, Megias I, Salas-Salvado J. Systemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obes Res. 2012;11(4):525–31.
Google Scholar
Fenton JI, Nunez NP, Yakar S, Perkins SN, Hord NG, Hursting SD. Diet-induced adiposity alters the serum profile of inflammation in C57BL/6N mice as measured by antibody array. Diabetes Obes Metab. 2010;11(4):343–54.
Google Scholar
Alvarez-Castro P, Sangiao-Alvarellos S, Brandon-Sanda I, Cordido F. Endocrine function in obesity. Endocrinol Nutr. 2011;58(8):422–32.
CAS
PubMed
Google Scholar
Jia WP, Wang C, Jiang S, Pan JM. Characteristics of obesity and its related disorders in China. Biomed Environ Sci. 2010;23(1):4–11.
CAS
PubMed
Google Scholar
Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223.
PubMed
PubMed Central
Google Scholar
Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121(6):2111–7.
CAS
PubMed
PubMed Central
Google Scholar
Jakicic JM, Otto AD. Physical activity considerations for the treatment and prevention of obesity. Am J Clin Nutr. 2005;82(1 supply):226S–9S.
CAS
PubMed
Google Scholar
Nguyen N, Varela J. Bariatric surgery for obesity and metabolic disorders: state of the art. Nat Rev Gastroenterol Hepatol. 2017;14(3):160–9.
PubMed
Google Scholar
Montan PD, Sourlas A, Olivero J, Silverio D, Guzman E, Kosmas EC. Pharmacologic therapy of obesity: mechanisms of action and cardio metabolic effects. Ann Transl Med. 2019;7(16):393.
CAS
PubMed
PubMed Central
Google Scholar
Grant R, Youm YH, Ravussin A, Dixit VD. Quantification of adipose tissue leukocytosis in obesity. Methods Mol Biol. 2013;1040:195–209.
PubMed
PubMed Central
Google Scholar
Rouzer CA, Marnett LJ. Cyclooxygenases: structural and functional insights. J Lipid Res. 2009;50(4):S29–34.
PubMed
PubMed Central
Google Scholar
Pengb G, Dixon DA, Muga SJ, Smith TJ, Wargovich MJ. Green tea polyphenol (−)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol Carcinog. 2006;45(5):309–19.
Google Scholar
Kojima M, Morisaki T, Izuhara K, Uchiyama A, Matsunari Y, Katano M, Tanaka M. Lipopolysaccharide increases cyclo-oxygenase-2 expression in a colon carcinoma cell line through nuclear factor-kappa B activation. Oncogene. 2000;19(9):1225–31.
CAS
PubMed
Google Scholar
Zhu Y, Zhu M, Lance P. iNOS signaling interacts with COX-2 pathway in colonic fibroblasts. Exp Cell Res. 2012;318(16):2116–27.
CAS
PubMed
Google Scholar
Liu W, Reinmuth N, Stoeltzing O, Parikh AA, Tellez C, Williams S, Jung YD, Fan F, Takeda A, Akagi M. Cyclooxygenase-2 is up-regulated by interleukin-1 beta in human colorectal cancer cells via multiple signaling pathways. Cancer Res. 2003;63(13):3632–6.
CAS
PubMed
Google Scholar
Yang CS, Wang X, Lu G, Picinich SC. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer. 2009;9(6):429–39.
CAS
PubMed
PubMed Central
Google Scholar
Hiningerfavier I, Benaraba R, Coves S, Anderson RA, Roussel AM. Green tea extract decreases oxidative stress and improves insulin sensitivity in an animal model of insulin resistance, the fructose-fed rat. J Am Coll Nutr. 2009;28(4):355–61.
CAS
Google Scholar
Li Y, Rahman SU, Huang Y, Zhang Y, Ming P, Zhu L, Chu X, Li J, Feng S, Wang X, Wu J. Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity. J Nutr Biochem. 2019;78(2020):108324.
PubMed
Google Scholar
Rahman SU, Li Y, Huang Y, Zhu L, Feng S, Wu J, Wang X. Treatment of inflammatory bowel disease via green tea polyphenols: possible application and protective approaches. Inflammopharmacol. 2018;26(2):319–30.
CAS
Google Scholar
Kao YH, Hiipakka RA, Liao S. Modulation of obesity by a green tea catechin. Am J Clin Nutr. 2000;72(5):1232–4.
CAS
PubMed
Google Scholar
Wu D, Wang J, Pae M, Meydani SN. Green tea EGCG, T cells, and T cell-mediated autoimmune diseases. Mol Asp Med. 2012;33(1):107–18.
CAS
Google Scholar
Huang J, Wang Y, Xie Z, Zhou Y, Zhang Y, Wan X. The anti-obesity effects of green tea in human intervention and basic molecular studies. Eur J Clin Nutr. 2014;68(10):1075–87.
CAS
PubMed
Google Scholar
Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem. 2011;22(1):1–7.
CAS
PubMed
Google Scholar
Lin JK, Linshiau SY. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol Nutr Food Res. 2006;50(2):211–7.
CAS
PubMed
Google Scholar
Newmark HL, Yang K, Lipkin M, Kopelovich L, Liu Y, Fan K, Shinozaki H. A Western-style diet induces benign and malignant neoplasms in the colon of normal C57Bl/6 mice. Carcinogenesis. 2001;22(11):1871–5.
CAS
PubMed
Google Scholar
Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatol. 2010;43(2 Supply):S99–S112.
Google Scholar
Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS. The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr. 2008;138(9):1677–83.
CAS
PubMed
PubMed Central
Google Scholar
Duffy SJ, Keaney JF, Holbrook M, Gokce N. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation. 2001;104(2):151–6.
CAS
PubMed
Google Scholar
Steptoe A, Gibson EL, Vuononvirta R, Hamer M, Wardle J, Rycroft JA, Martin JF, Erusalimsky JD. The effects of chronic tea intake on platelet activation and inflammation: a double-blind placebo controlled trial. Atherosclerosis. 2007;193(2):277–82.
CAS
PubMed
Google Scholar
Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev. 2010;23(2):270–99.
CAS
PubMed
Google Scholar
Reuter TY. Diet-induced models for obesity and type 2 diabetes. Drug Discov Today Dis Models. 2008;4(1):3–8.
Google Scholar
Chen YK, Cheung C, Reuhl KR, Liu AB, Lee MJ, Lu YP, Yang CS. Effects of green tea polyphenol (−)-Epigallocatechin-3-gallate on a newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. J Agr Food Chem. 2011;59(21):11862–71.
CAS
Google Scholar
Hasegawa N, Yamda N, Mori M. Powdered green tea has antilipogenic effect on Zucker rats fed a high-fat diet. Phytother Res. 2010;17(5):477–80.
Google Scholar
Choo JJ. Green tea reduces body fat accretion caused by high-fat diet in rats through beta-adrenoceptor activation of thermogenesis in brown adipose tissue. J Nutr Biochem. 2003;14(11):671–6.
CAS
PubMed
Google Scholar
Ryu OH, Lee J, Lee KW, Kim HY, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM. Effects of green tea consumption on inflammation, insulin resistance and pulse wave velocity in type 2 diabetes patients. Diabetes Res Clin Pract. 2006;71(3):356–8.
CAS
PubMed
Google Scholar
Kono S, Shinchi K, Wakabayashi K, Honjo S, Todoroki I, Sakurai Y, Imanishi K, Nishikawa H, Ogawa S, Katsurada M. Relation of green tea consumption to serum lipids and lipoproteins in Japanese men. J Epidemiol. 1996;6(3):128–33.
CAS
PubMed
Google Scholar
Tokunaga S, White IR, Frost C, Tanaka K, Kono S, Tokudome S, Akamatsu T, Moriyama T, Zakouji H. Green tea consumption and serum lipids and lipoproteins in a population of healthy workers in Japan. Ann Epidemiol. 2002;12(3):157–65.
PubMed
Google Scholar
Sayama K, Lin S, Zheng G, Oguni I. Effects of green tea on growth, food utilization and lipid metabolism in mice. In Vivo. 2000;14(4):481–4.
CAS
PubMed
Google Scholar
Ramachandran B, Jayavelu S, Murhekar K, Rajkumar T. Repeated dose studies with pure Epigallocatechin-3-gallate demonstrated dose and route dependant hepatotoxicity with associated dyslipidemia. Toxicol Rep. 2016;3:336–45.
CAS
PubMed
PubMed Central
Google Scholar
Shen CL, Brackee G, Song X, Tomison MD, Finckbone V, Mitchell KT, Tang L, Chyu MC, Dunn DM, Wang JS. Safety evaluation of green tea polyphenols consumption in middle-aged ovariectomized rat model. J Food Sci. 2017;82(9):2192–205.
CAS
PubMed
PubMed Central
Google Scholar
Serisier S, Leray V, Poudroux W, Magot T, Ouguerram K, Nguyen P. Effects of green tea on insulin sensitivity, lipid profile and expression of PPARalpha and PPARgamma and their target genes in obese dogs. Br J Nutr. 2008;99(6):1208–16.
CAS
PubMed
Google Scholar
Ashida H, Furuyashiki T, Nagayasu H, Bessho H, Sakakibara H, Hashimoto T, Kanazawa K. Anti-obesity actions of green tea: possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors. Biofactors. 2004;22(1–4):135–40.
CAS
PubMed
Google Scholar
Banerjee S, Panda CK, Das S. Clove (Syzygium aromaticum L.), a potential chemo preventive agent for lung cancer. Carcinogenesis. 2006;27(8):1645–54.
CAS
PubMed
Google Scholar
Dannenberg AJ, Subbaramaiah K. Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell. 2003;4(6):431–6.
CAS
PubMed
Google Scholar
Dohadwala M, Batra RK, Luo J, Lin Y, Krysan K, Pold M, Sharma S, Dubinett SM. Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion. J Biol Chem. 2002;277(52):50828–33.
CAS
PubMed
PubMed Central
Google Scholar
Mann JR, Backlund MG, Dubois RN. Mechanisms of disease: inflammatory mediators and cancer prevention. Nat Clin Pract Oncol. 2005;2(4):202–10.
CAS
PubMed
Google Scholar
deJong AJ, Kloppenburg M, Toes RE, Ioanfacsinay A. Fatty acids, lipid mediators, and T-cell function. Front Immunol. 2014;5:483.
Google Scholar
Ip BC, Hogan AE, Nikolajczyk BS. Lymphocyte roles in metabolic dysfunction: of men and mice. Trends Endocrinol Metab. 2015;26(2):91–100.
CAS
PubMed
PubMed Central
Google Scholar
Zheng G, Sayama K, Okubo T, Juneja LR, Oguni I. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo. 2004;18(1):55–62.
CAS
PubMed
Google Scholar
Richard D, Kefi K, Barbe U, Poli A, Bausero P, Visioli F. Weight and plasma lipid control by decaffeinated green tea. Pharmacol Res. 2009;59(5):351–4.
CAS
PubMed
Google Scholar
Kotronen A, YkiJärvinen H. Fatty liver a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008;28(1):27–38.
CAS
PubMed
Google Scholar
Targher G, Arcaro G. Non-alcoholic fatty liver disease and increased risk of cardiovascular disease. Atherosclerosis. 2007;191(2):235–40.
CAS
PubMed
Google Scholar
Unger RH, Orci L. Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J. 2001;15(2):312–21.
CAS
PubMed
Google Scholar
Slavin JL. Dietary fiber and body weight. Nutr. 2005;21(3):411–8.
Google Scholar
Han S, Jiao J, Zhang W, Xu J, Wan Z, Zhang W, Gao X, Qin L. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet. Sci Rep. 2015;5:15256.
CAS
PubMed
PubMed Central
Google Scholar
Fabbrini E, Sullivan SS. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010;51(2):679–89.
CAS
PubMed
PubMed Central
Google Scholar
Yu Z, Geary N, Corwin RL. Individual effects of estradiol and progesterone on food intake and body weight in ovariectomized binge rats. Physiol Behav. 2011;104(5):687–93.
CAS
PubMed
PubMed Central
Google Scholar
Kim SP, Ellmerer M, Kirkman EL, Bergman RN. Beta-cell “rest” accompanies reduced first-pass hepatic insulin extraction in the insulin-resistant, fat-fed canine model. Am J Physiol Endocrinol Metab. 2007;292(6):E1581–9.
CAS
PubMed
Google Scholar
Richey JM, Woolcott OO, Stefanovski D, Harrison LN, Zheng D, Lottati M, Hsu IR, Kim SP, Kabir M, Catalano KJ. Rimonabant prevents additional accumulation of visceral and subcutaneous fat during high-fat feeding in dogs. Am J Physiol Endocrinol Metab. 2009;296(6):E1311–8.
CAS
PubMed
PubMed Central
Google Scholar
Woods SC, Seeley RJ, Rushing PA, D'Alessio D, Tso P. A controlled high-fat diet induces an obese syndrome in rats. J Nutr. 2003;133(4):1081–7.
CAS
PubMed
Google Scholar