Avendaño-Herrera R. Proper antibiotics use in the Chilean salmon industry: policy and technology bottlenecks. Aquaculture. 2018;495:803–5.
Google Scholar
FAO. 2018. El estado mundial de la pesca y la acuicultura 2018. Cumplir los objetivos de desarrollo sostenible. Roma. Licencia: CC BY-NC-SA 3.0 IGO.
Johnston I, Bower N, Macqueen D. Growth and the regulation of myotomal muscle mass in teleost fish. J Exp Biol. 2011;214(10):1617–28.
CAS
PubMed
Google Scholar
Valenzuela C, Zuloaga R, Mercado L, Einarsdottir I, Björnsson B, Valdés J, et al. Chronic stress inhibits growth and induces proteolytic mechanisms through two different nonoverlapping pathways in the skeletal muscle of a teleost fish. Am J Physiol Regul Integr Comp Physiol. 2018;314(1):R102–13.
PubMed
Google Scholar
Nemova N, Lysenko L, Kantserova N. Degradation of skeletal muscle protein during growth and development of salmonid fish. Russ J Dev Biol. 2016;47(4):161–72.
CAS
Google Scholar
Vélez E, Azizi S, Verheyden D, Salmerón C, Lutfi E, Sánchez-Moya A, et al. Proteolytic systems’ expression during myogenesis and transcriptional regulation by amino acids in gilthead sea bream cultured muscle cells. PLoS One. 2017;12(12):e0187339.
PubMed
PubMed Central
Google Scholar
Leestemaker Y, Ovaa H. Tools to investigate the ubiquitin proteasome system. Drug Discov Today Technol. 2017;26:25–31.
PubMed
Google Scholar
Bell R, Al-Khalaf M, Megeney L. The beneficial role of proteolysis in skeletal muscle growth and stress adaptation. Skelet Muscle. 2016;6:16.
PubMed
PubMed Central
Google Scholar
Seiliez I, Dias K, Cleveland B. Contribution of the autophagy-lysosomal and ubiquitin-proteasomal proteolytic systems to total proteolysis in rainbow trout (Oncorhynchus mykiss) myotubes. Am J Physiol Regul Integr Comp Physiol. 2014;307(11):R1330–7.
CAS
PubMed
Google Scholar
Bodine S. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704–8.
CAS
PubMed
Google Scholar
Valenzuela C, Escobar D, Perez L, Zuloaga R, Estrada J, Mercado L, et al. Transcriptional dynamics of immune, growth and stress related genes in skeletal muscle of the fine flounder (Paralichthys adpersus) during different nutritional statuses. Dev Comp Immunol. 2015;53(1):145–57.
CAS
PubMed
Google Scholar
He C, Klionsky D. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43(1):67–93.
CAS
PubMed
PubMed Central
Google Scholar
Yoshii S, Mizushima N. Monitoring and measuring autophagy. Int J Mol Sci. 2017;18(9):1865.
PubMed Central
Google Scholar
Salem M, Kenney P, Killefer J, Nath J. Isolation and characterization of calpains from rainbow trout muscle and their role in texture development. J Muscle Foods. 2005;15(4):245–55.
Google Scholar
Salem M, Yao J, Rexroad C, Kenney P, Semmens K, Killefer J, et al. Characterization of calpastatin gene in fish: its potential role in muscle growth and fillet quality. Comp Biochem Physiol B Biochem Mol Biol. 2005;141(4):488–97.
PubMed
Google Scholar
Nakano T, Afonso L, Beckman B, Iwama G, Devlin R. Acute physiological stress down-regulates mRNA expressions of growth-related genes in Coho salmon. PLoS One. 2013;8(8):e71421.
PubMed
PubMed Central
Google Scholar
Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response. Annu Rev Physiol. 2005;67(1):259–84.
CAS
PubMed
Google Scholar
Bury N, Sturm A. Evolution of the corticosteroid receptor signaling pathway in fish. Gen Comp Endocrinol. 2007;153(1–3):47–56.
CAS
PubMed
Google Scholar
Barton B. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol. 2002;42(3):517–25.
CAS
PubMed
Google Scholar
Midwood J, Larsen M, Aarestrup K, Cooke S. Stress and food deprivation: linking physiological state to migration success in a teleost fish. J Exp Biol. 2016;219(23):3712–8.
PubMed
Google Scholar
Yarahmadi P, Miandare H, Fayaz S, Caipang C. Increased stocking density causes changes in expression of selected stress- and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2016;48:43–53.
CAS
PubMed
Google Scholar
Sun Y, Liang X, Chen J, Tang R, Li L, Li D. Change in ubiquitin proteasome system of grass carp Ctenopharyngodon idellus reared in the different stocking densities. Front Physiol. 2018;9:837.
PubMed
PubMed Central
Google Scholar
McGhee N, Jefferson L, Kimball S. Elevated corticosterone associated with food deprivation upregulates expression in rat skeletal muscle of the mTORC1 repressor, REDD1. J Nutr. 2009;139(5):828–34.
CAS
PubMed
PubMed Central
Google Scholar
Khansari A, Balasch J, Vallejos-Vidal E, Teles M, Fierro-Castro C, Tort L, et al. Comparative study of stress and immune-related transcript outcomes triggered by Vibrio anguillarum bacterin and air exposure stress in liver and spleen of gilthead seabream (Sparus aurata), zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2019;86:436–48.
CAS
PubMed
Google Scholar
Teles M, Boltaña S, Reyes-López F, Santos M, Mackenzie S, Tort L. Effects of chronic cortisol administration on global expression of GR and the liver transcriptome in Sparus aurata. Mar Biotechnol. 2012;15(1):104–14.
PubMed
Google Scholar
Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda S, et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metabol. 2011;13(2):170–82.
CAS
Google Scholar
Yada T, Azuma T, Hyodo S, Hirano T, Grau E, Schreck C. Differential expression of corticosteroid receptor genes in rainbow trout (Oncorhynchus mykiss) immune system in response to acute stress. Can J Fish Aquat Sci. 2007;64(10):1382–9.
CAS
Google Scholar
Wolff N, McKay R, Brugarolas J. REDD1/DDIT4-independent mTORC1 inhibition and apoptosis by glucocorticoids in thymocytes. Mol Cancer Res. 2014;12(6):867–77.
CAS
PubMed
PubMed Central
Google Scholar
Cassidy A, Driedzic W, Campos D, Heinrichs-Caldas W, Almeida-Val V, Val A, et al. Protein synthesis is lowered by 4EBP1 and eIF2-α signaling while protein degradation may be maintained in fasting, hypoxic Amazonian cichlids Astronotus ocellatus. J Exp Biol. 2017;221(2):jeb167601.
Google Scholar
Fuentes E, Björnsson B, Valdés J, Einarsdottir I, Lorca B, Alvarez M, et al. IGF-I/PI3K/Akt and IGF-I/MAPK/ERK pathways in vivo in skeletal muscle are regulated by nutrition and contribute to somatic growth in the fine flounder. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1532–42.
CAS
PubMed
Google Scholar
Chen J, Cao J, Luo Y, Xie L, Song J, Xue W, et al. Expression of ERK and p-ERK proteins of ERK signaling pathway in the kidneys of fluoride-exposed carp (Cyprinus carpio). Acta Histochem. 2014;116(8):1337–41.
CAS
PubMed
Google Scholar
Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2012;6(1):25–39.
Google Scholar
Sandri M. Autophagy in skeletal muscle. FEBS Lett. 2010;584(7):1411–6.
CAS
PubMed
Google Scholar
Martin-Rincon M, Morales-Alamo D, Calbet J. Exercise-mediated modulation of autophagy in skeletal muscle. Scand J Med Sci Sports. 2017;28(3):772–81.
PubMed
Google Scholar
von Muhlinen N. Methods to measure autophagy in cancer metabolism. Methods Mol Biol. 2019;1928:149–73.
Google Scholar
Tanida I, Ueno T, Kominami E. LC3 and autophagy. Methods Mol Biol. 2008;445:77–88.
CAS
PubMed
Google Scholar
Lu D, Ma Q, Wang J, Li L, Han S, Limbu S, et al. Fasting enhances cold resistance in fish through stimulating lipid catabolism and autophagy. J Physiol. 2019;597(6):1585–603.
CAS
PubMed
PubMed Central
Google Scholar
Troncoso R, Paredes F, Parra V, Gatica D, Vásquez-Trincado C, Quiroga C, et al. Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle. 2014;13(14):2281–95.
CAS
PubMed
PubMed Central
Google Scholar
Neel B, Lin Y, Pessin J. Skeletal muscle autophagy: a new metabolic regulator. Trends Endocrinol Metab. 2013;24(12):635–43.
CAS
PubMed
Google Scholar
Lysenko L, Kantserova N, Kaivarainen E, Krupnova M, Nemova N. Skeletal muscle protease activities in the early growth and development of wild Atlantic salmon (Salmo salar L.). Comp Biochem Physiol B Biochem Mol Biol. 2017;211:22–8.
CAS
PubMed
Google Scholar
Costelli P, Reffo P, Penna F, Autelli R, Bonelli G, Baccino F. Ca2+−dependent proteolysis in muscle wasting. Int J Biochem Cell Biol. 2005;37(10):2134–46.
CAS
PubMed
Google Scholar
Goll D, Thompson V, Li H, Wei W, Cong J. The Calpain system. Physiol Rev. 2003;83(3):731–801.
CAS
PubMed
Google Scholar
Conde-Sieira M, Muñoz J, López-Patiño M, Gesto M, Soengas J, Míguez J. Oral administration of melatonin counteracts several of the effects of chronic stress in rainbow trout. Domest Anim Endocrinol. 2014;46:26–36.
CAS
PubMed
Google Scholar
Aedo J, Maldonado J, Aballai V, Estrada J, Bastias-Molina M, Meneses C, et al. mRNA-seq reveals skeletal muscle atrophy in response to handling stress in a marine teleost, the red cusk-eel (Genypterus chilensis). BMC Genomics. 2015;16(1).
Teles M, Tridico R, Callol A, Fierro-Castro C, Tort L. Differential expression of the corticosteroid receptors GR1, GR2 and MR in rainbow trout organs with slow release cortisol implants. Comp Biochem Physiol A Mol Integr Physiol. 2013;164(3):506–11. https://doi.org/10.1016/j.cbpa.2012.12.018.