Borel N, Polkinghorne A, Pospischil A. A review on chlamydial diseases in animals: still a challenge for pathologists? Vet Pathol. 2018;55:374–90.
Article
Google Scholar
Vidal S, Kegler K, Greub G, Aeby S, Borel N, Dagleish MP, Posthaus H, Perreten V, Rodriguez-Campos S. Neglected zoonotic agents in cattle abortion: tackling the difficult to grow bacteria. BMC Vet Res. 2017;13:373. https://doi.org/10.1186/s12917-017-1294-y.
Article
PubMed
PubMed Central
Google Scholar
Qin SY, Huang SY, Yin MY, Tan QD, Liu GX, Zhou DH, Zhu XQ, Zhou JZ, Qian AD. Seroprevalence and risk factors of Chlamydia abortus infection in free-ranging white yaks in China. BMC Vet Res. 2015;11:8. https://doi.org/10.1186/s12917-015-0323-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Liu P, Cao X, Lou Z, Zareba-Marchewka K, Szymanska-Czerwinska M, Niemczuk K, Hu B, Bai X, Zhou J. First report of Chlamydia abortus in farmed fur animals. Biomed Res Int. 2018;26:4289648 e-Collection. https://doi.org/10.1155/2018/4289648.
Google Scholar
Santoro M, Laccarino D, Di Nocera F, Degli Uberti B, Lucibelli MG, Borriello G, De Luca G, D’Amore M, Cerrone A, Galiero G. Molecular detection of Chlamydia abortus in a stranded Mediterranean striped dolphi Stenella coeruleoalba. Dis Aquat Org. 2019;132:203–8.
Article
CAS
Google Scholar
Ortega N, Caro MR, Gallego MC, Murcia-Belmonte A, Alvarez D, Del Rio L, Cuello F, Salinas J. Isolation of Chlamydia abortus fron a laboratory worker diagnoses with atypical penumonia. Ir Vet J. 2016;69:8. https://doi.org/10.1186/s13620-016-0067-4.
Article
PubMed
PubMed Central
Google Scholar
Longbottom D, Livingstone M, Maley S, van der Zon A, Rocchi M, Wilson K, Wheelhouse N, Dagleish M, Aitchison K, Wattagedera S, Nath M, Entrican G, Buxton D. Intranasal infection with chlamydia abortus induces dose-dependent latency and abortion in sheep. PLoS One. 2013;8:e57950. https://doi.org/10.1371/journal.pone.0057950.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kintner J, Schoborg RV, Wyrick PB, Hall JV. Progesterone antagonizes the positive influence of estrogen on Chlamydia trachomatis serovar E in an Ishikawa/SHT-290 co-culture model. Pathog Dis. 2015;73:ftv015. https://doi.org/10.1093/femspd/ftv015.
Hall JV, Schell M, Dessus-Babus S, Moore CG, Whittimore JD, Sal M, Dill BD, Wyrick PB. The multifaceted role of oestrogen in enhancing Chlamydia trachomatis infection in polarized human endometrial epithelial cells. Cell Microbiol. 2011;13:1183–99.
Article
CAS
Google Scholar
Guseva NV, Knight ST, Whittimore JD, Wyrick PB. Primary cultures of female swine genital epithelial cells in vitro: a new approach for the study of hormonal modulation of chlamydia infection. Infect Immun. 2003;71:4700–10.
Article
CAS
Google Scholar
Nasar A. Hormonal changes in the uterus during pregnancy - lessons from the ewe: a review. J Agric Rural Dev. 2006;4:1–7.
Google Scholar
Wyrick PB. Chlamydia trachomatis persistence in vitro: an overview. J Infect Dis. 2010;201(Suppl):S88–95.
Article
CAS
Google Scholar
Hogan RJ, Mathews SA, Mukhopadhyay S, Summersgill JT, Timms P. Chlamydial persistence: beyond the biphasic paradigm. Infect Immun. 2004;72:1843–55.
Article
CAS
Google Scholar
Pospischil A, Borel N, Chowdhury EH, Guscetti F. Aberrant chlamydial developmental forms in the gastrointestinal tract of pigs spontaneously and experimentally infected with Chlamydia suis. Vet Microbiol. 2009;135:147–56.
Article
Google Scholar
Goellner S, Schubert E, Liebler-Tenorio E, Hotzel H, Saluz HP, Sachse K. Transcriptional response patterns of Chlamydophila psittaci in different in vitro models of persistent infection. Infect Immun. 2006;74:4801–8.
Article
CAS
Google Scholar
Klos A, Thalmann J, Peters J, Gerard HC, Hudson AP. The transcript profile of persistent Chlamydophila (Chlamydia) pneumoniae in vitro depends on the means by which persistence is induced. FEMS Microbiol Lett. 2009;291:120–6.
Article
CAS
Google Scholar
Timms P, Good D, Wan C, Theodoropoulos C, Mukhopadhyay S, Summersgill J, Mathews S. Differential transcriptional responses between the interferon-gamma-induction and iron-limitation models of persistence for Chlamydia pneumoniae. J Microbiol Immunol Infect. 2009;42:27–37.
CAS
PubMed
Google Scholar
Brown J, Entrican G. Interferon-gamma mediates long-term persistent Chlamydia psittaci infection in vitro. J Comp Pathol. 1996;115:373–83.
Article
CAS
Google Scholar
Brown J, Howie SEM, Entrican G. A role for tryptophan in immune control of chlamydial abortion in sheep. Vet Immunol Immunopathol. 2001;82:107–19.
Article
CAS
Google Scholar
Borel N, Dumrese C, Ziegler U, Schifferli A, Kaiser C, Pospischil A. Mixed infections with chlamydia and porcine epidemic diarrhea virus - a new in vitro model of chlamydial persistence. BMC Microbiol. 2010;10:201. https://doi.org/10.1186/1471-2180-10-201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomson NR, Yeats C, Bell K, Holden MTG, Bentley SD, Livingstone M, Cerdeno-Tarraga AM, Harris B, Doggett J, Ormond D, Mungall K, Clarke K, Feltwell T, Hance Z, Sanders M, Quail MA, Price C, Barrell BG, Parkhill J, Longbottom D. The Chlamlydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome Res. 2005;15:629–40.
Article
CAS
Google Scholar
Amirshahi A, Wan C, Beagley K, Latter J, Symonds I, Timms P. Modulation of the Chlamydia trachomatis in vitro transcriptome response by the sex hormones estradiol and progesterone. BMC Microbiol. 2011;11:150. https://doi.org/10.1186/1471-2180-11-150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seals RC, Wulster-Radcliffe MC, Lewis GS. Modulation of the uterine response to infectious bacteria in postpartum ewes. Am J Reprod Immunol. 2002;47:57–63.
Article
Google Scholar
Fischer J, Jung N, Robinson N, Lehmann C. Sex differences in immune responses to infectious diseases. Infection. 2015;43:399–403.
Article
CAS
Google Scholar
Kaushic C, Zhou F, Murdin AD, Wira CR. Effects of estradiol and progesterone on susceptibility and early immune responses to Chlamydia trachomatis infection in the female reproductive tract. Infect Immun. 2000;68:4207–16.
Article
CAS
Google Scholar
Schoborg RV. Chlamydia persistence - a tool to dissect chlamydia-host interactions. Microb Infect. 2011;13:649–62.
Article
CAS
Google Scholar
Pérez-Martínez JA, Storz J. Persistent infection of L-cells with an ovine abortion strain of Chlamydia psittaci. Infect Immun. 1985;50:453–8.
PubMed
PubMed Central
Google Scholar
Kintner J, Lajoie D, Hall J, Whittimore J, Schoborg RV. Commonly prescribed beta-lactam antibiotics induce C trachomatis persistence/stress in culture at physiologically relevant concentrations. Front Cell Infect Microbiol. 2014;4:44. https://doi.org/10.3389/fcimb.2014.00044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Pietro M, Tramonti A, De Santis F, De Biase D, Schiavoni G, Filardo S, Zagaglia C, Sessa R. Analysis of gene expression in penicillin G induced persistence of Chlamydia pneumoniae. J Biol Regul Homeost Agents. 2012;26:277–84.
PubMed
Google Scholar
Hu YQ, Chen LL, Wang C, Xie YF, Chen ZX, Liu LZ, Su ZH, Wu YM. Transcriptional analysis of 10 selected genes in a model of penicillin G induced persistence of Chlamydophila psittaci in HeLa cells. J Microbiol Biotechnol. 2015;25:1246–56.
Article
CAS
Google Scholar
De Briyne N, Atkinson J, Pokludova L, Borriello SP. Antibiotics used most commonly to treat animals in Europe. Vet Rec. 2014;175:325. https://doi.org/10.1136/vr.102462.
Article
PubMed
PubMed Central
Google Scholar
Navarro JA, de la Fuente JN G, Sánchez J, Martínez CM, Buendía AJ, Gutiérrez-Martín CB, Rodríguez-Ferri EF, Ortega N, Salinas J. Kinetics of infection and effects on the placenta of Chlamydophila abortus in experimentally infected pregnant ewes. Vet Pathol. 2004;41:498–505.
Article
CAS
Google Scholar
Quayle AJ, Porter EM, Nussbaum AA, Wang YM, Brabec C, Yip KP, Mok SC. Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am J Pathol. 1998;152:1247–58.
CAS
PubMed
PubMed Central
Google Scholar
Fahey JV, Wira CR. Effect of menstrual status on antibacterial activity and secretory leukocyte protease inhibitor production by human uterine epithelial cells in culture. J Infect Dis. 2002;185:1606–13.
Article
CAS
Google Scholar
Wan C, Latter JL, Amirshahi A, Symonds I, Finnie J, Bowden N, Scott RJ, Cunningham KA, Timms P, Beagley KW. Progesterone activates multiple innate immune pathways in Chlamydia trachomatis-infected endocervical cells. Am J Reprod Immunol. 2014;71:165–77.
Article
CAS
Google Scholar
Wheelhouse N, Wattegedera S, Stanton J, Maley S, Watson D, Jepson C, Deane D, Buxton D, Longbottom D, Baszler T, Entrican G. Ovine trophoblast is a primary source of TNF alpha during Chlamydophila abortus infection. J Reprod Immunol. 2009;80:49–56.
Article
CAS
Google Scholar
Johnson GA, Burghardt RC, Newton GR, Bazer FW, Spencer TE. Development and characterization of immortalized ovine endometrial cell lines. Biol Reprod. 1999;61:1324–30.
Article
CAS
Google Scholar
Haldorson GJ, Stanton JB, Mathison BA, Suarez CE, Baszler TV. Neospora caninum: antibodies directed against tachyzoite surface protein NcSRS2 inhibit parasite attachment and invasion of placental trophoblasts in vitro. Exp Parasitol. 2006;112:172–8.
Article
CAS
Google Scholar
Bartlewski PM, Baby TE, Giffin JL. Reproductive cycles in sheep. Anim Reprod Sci. 2011;124:259–68.
Article
CAS
Google Scholar
Buendía AJ, de Oca RM, Navarro JA, Sánchez J, Cuello F, Salinas J. Role of polymorphonuclear neutrophils in a murine model of Chlamydia psittaci-induced abortion. Infect Immun. 1999;67:2110–6.
PubMed
PubMed Central
Google Scholar
Buendía AJ, Salinas J, Sánchez J, Gallego MC, Rodolakis A, Cuello F. Localization by immunoelectron microscopy of antigens of Chlamydia psittaci suitable for diagnosis or vaccine development. FEMS Microbiol Lett. 1997;150:113–9.
Article
Google Scholar
Kalmar I, Berndt A, Yin L, Chiers K, Sachse K, Vanrompay D. Host-pathogen interactions in specific pathogen-free chickens following aerogenous infection with Chlamydia psittaci and Chlamydia abortus. Vet Immunol Immunopathol. 2015;164:30–9.
Article
CAS
Google Scholar
Mukhopadhyay S, Miller RD, Sullivan ED, Theodoropoulos C, Mathews SA, Timms P, Summersgill JT. Protein expression profiles of Chlamydia pneumoniae in models of persistence versus those of heat shock stress response. Infect Immun. 2003;74:3853–63.
Article
Google Scholar