Zhang NY, Qi M, Zhao L, Zhu MK, Guo J, Liu J, Gu CQ, Rajput SA, Krumm CS, Qi DS, Sun LH. Curcumin prevents aflatoxin B1 hepatoxicity by inhibition of cytochrome P450 isozymes in chick liver. Toxins. 2016;8(11):327.
Article
PubMed Central
CAS
Google Scholar
Bovo F, Franco LT, Kobashigawa E, Rottinghaus GE, Ledoux DR, Oliveira CA. Efficacy of beer fermentation residue containing Saccharomyces cerevisiae cells for ameliorating aflatoxicosis in broilers. Poult sci. 2015;94(5):934–42.
Article
CAS
PubMed
Google Scholar
Shareef AM, Sito EO. Effect of (mycofix® plus) and aflatoxin on health and performance of broiler chickens. Bas J Vet Res. 2019;18(1):283–7.
Google Scholar
Fowler JC. Detecting Aflatoxicosis in Broilers in the Evaluation of Clay-based, Toxin-binding Feed Additives (Doctoral dissertation). 2014.
Google Scholar
Jahanian E, Mahdavi AH, Asgary S, Jahanian R. Effect of dietary supplementation of mannanoligosaccharides on growth performance, ileal microbial counts, and jejunal morphology in broiler chicks exposed to aflatoxins. Livest Sci. 2016;1(190):123–30.
Article
Google Scholar
Dhanaoal SK, Rao S, Govindaraju PK, Hukkeri R, Mathesh K. Ameliorative efficacy of citrus fruit oil in aflatoxicosis in broilers: a growth and biochemical study. Turkish J Vet Anim Sci. 2014;38(2):207–11.
Google Scholar
Saleemi MK, Ashraf K, Gul ST, Naseem MN, Sajid MS, Mohsin M, He C, Zubair M, Khan A. Toxicopathological effects of feeding aflatoxins B1 in broilers and its ameliosration with indigenous mycotoxin binder. Ecotoxicol Environ Saf. 2020;15(187):109712.
Article
CAS
Google Scholar
Jahanian E, Mahdavi AH, Asgary S, Jahanian R, Tajadini MH. Effect of dietary supplementation of mannanoligosaccharides on hepatic gene expressions and humoral and cellular immune responses in aflatoxin-contaminated broiler chicks. Prev Vet Med. 2019;1(168):9–18.
Article
Google Scholar
Rathod P, Gangadhar K, Gangane G, Bhojane N. Effect of aflatoxin on haematological and biochemical alteration in broilers. Int J Sci Environ Tech. 2017;6:824–31.
Google Scholar
Rashidi N, Khatibjoo A, Taherpour K, Akbari-Gharaei M, Shirzadi H. Effects of licorice extract, probiotic, toxin binder and poultry litter biochar on performance, immune function, blood indices and liver histopathology of broilers exposed to aflatoxin-B1. Poult Sci. 2020;99(11):5896–906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaker-Esteghamati H, Seidavi AR, Bouyeh M. A review on the effect of Silybum marianum and its derivatives on broilers under healthy and aflatoxicosis conditions: part 1: Performance, carcass and meat characteristics, and intestinal microflora. Worlds Poult Sci J. 2020;76(2):318–27.
Article
Google Scholar
Flora G, Gupta D, Tiwari A. Nanocurcumin: a promising therapeutic advancement over native curcumin. Crit Rev Ther Drug Carrier Syst. 2013;30(4):331–68.
Article
CAS
PubMed
Google Scholar
Poapolathep S, Imsilp K, Machii K, Kumagai S, Poapolathep A. The effects of curcumin on aflatoxin B1-induced toxicity in rats. Biocontrol Sci. 2015;20(3):171–7.
Article
CAS
PubMed
Google Scholar
Emadi M, Hadavi A, Ameri J, Kermanshahi H. The effect of curcumin on acetaminophen-induced toxicity on performance and some blood parameters of Japanese quail from 0–37 days of age. Iranian J Appl Anim Sci. 2015;5(1):203–7.
Google Scholar
Rahmani M, Golian A, Kermanshahi H, Bassami MR. Effects of curcumin and nanocurcumin on growth performance, blood gas indices and ascites mortalities of broiler chickens reared under normal and cold stress conditions. Ital J Anim Sci. 2017;16(3):438–46.
Article
CAS
Google Scholar
Sayrafi R, Hosseini SM, Ahmadi MA. The protective effects of nanocurcumin on liver toxicity induced by salinomycin in broiler chickens. Rev Med Vet. 2017;168(7/9):136–42.
CAS
Google Scholar
Heidary M, Hassanabadi A, Mohebalian H. Effects of in ovo injection of nanocurcumin and vitamin E on antioxidant status, immune responses, intestinal morphology and growth performance of broiler chickens exposed to heat stress. J Livest Sci Technol. 2020;8(1):17–27.
Google Scholar
Setthacheewakul S, Mahattanadul S, Phadoongsombut N, Pichayakorn W, Wiwattanapatapee R. Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. Eur J Pharm Biopharm. 2010;76(3):475–85.
Article
CAS
PubMed
Google Scholar
Soliman MM, Seehy MA, El Moghazy G, Soliman SM. Effects of additives mannan and β-glucan as a prebiotics on broilers diets contaminated with aflatoxin. Alex Sci Exch. 2014;35(JULY-SEPTEMBER):146–53.
Google Scholar
Yalçın S, Yalçın S, Eser H, Şahin A, Yalçın S, Güçer KŞ. Effects of dietary yeast cell wall supplementation on performance, carcass characteristics, antibody production and histopathological changes in broilers. Kafkas Universitesi Veteriner Fakultesi Dergisi. 2014;20(5):757–64.
Google Scholar
Wade MR, Sapcota D. Effect of dietary esterified glucomannan on the performance of broiler chickens during experimental aflatoxicosis. Anim Nutr Feed Technol. 2017;17(1):107–16.
Article
Google Scholar
Salem R, El-Habashi N, Fadl SE, Sakr OA, Elbialy ZI. Effect of probiotic supplement on aflatoxicosis and gene expression in the liver of broiler chicken. Environ Toxicol Pharmacol. 2018;1(60):118–27.
Article
CAS
Google Scholar
Tessari EN, Kobashigawa E, Cardoso AL, Ledoux DR, Rottinghaus GE, Oliveira CA. Effects of aflatoxin B1 and fumonisin B1 on blood biochemical parameters in broilers. Toxins. 2010;2(4):453–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saleh MK, Al-Sereah BA, Iman YH. Toxicological pathology of aflatoxin B1 in local pigeon mainly in liver, kidney and heart. J Int Acad Res Multidisc. 2016;4(3):2320–5083.
Google Scholar
Karaman M, Basmacioglu H, Ortatatli M, Oguz H. Evaluation of the detoxifying effect of yeast glucomannan on aflatoxicosis in broilers as assessed by gross examination and histopathology. Br Poult Sci. 2005;46(3):394–400.
Article
CAS
PubMed
Google Scholar
Raja L, Singh CK, Mondal M, Nety S, Koley K. Ameliorative effect of Curcuma longa in Aflatoxicosis induced hematological and histopathological changes in broiler birds. Int J Curr Microbiol Appl Sci. 2017;6(10):288–301.
Article
CAS
Google Scholar
Dalvi RR, Ademoyero AA. Toxic effects of aflatoxin B1 in chickens given feed contaminated with Aspergillus flavus and reduction of the toxicity by activated charcoal and some chemical agents. Avian Dis. 1984;1:61–9.
Article
Google Scholar
Subhani Z, Shahid M, Sarwar MS, Naveed M, Munir H. Adverse effect of oxalis corniculataon growth performance of broiler chicksduring aflatoxicosis. Matrix Science Pharma (MSP). 2018;2(1):10–3.
Article
Google Scholar
Mahrose KM, Michalak I, Farghly M, Elokil A, Zhang R, Ayaşan T, Mekawy A, Fazlani S. Role of clay in detoxification of aflatoxin B1 in growing Japanese quail with reference to gender. Vet Res Commun. 2021;45(4):363–71.
Article
PubMed
Google Scholar
dos Santos VM, da Silva OG, de Lima CA, Curvello FA. Broiler chick performance using Saccharomyces cerevisiae yeast cell wall as an anti-mycotoxin additive. Czech J Anim Sci. 2021;66(2):65–72.
Article
Google Scholar
Mahmood T, Pasha TN, Khattak FM. Comparative evaluation of different techniques for AF detoxification in poultry feed and its effect on broiler performance. AFs-Detection, Measurement and Control, Ed: Irineo Torres-Pacheco, Intech Open. 2011.
Gowda NK, Ledoux DR, Rottinghaus GE, Bermudez AJ, Chen YC. Antioxidant efficacy of curcuminoids from turmeric (Curcuma longa L.) powder in broiler chickens fed diets containing aflatoxin B1. Br J Nutr. 2009;102(11):1629–34.
Article
CAS
PubMed
Google Scholar
Liu N, Wang JQ, Jia SC, Chen YK, Wang JP. Effect of yeast cell wall on the growth performance and gut health of broilers challenged with aflatoxin B1 and necrotic enteritis. Poult Sci. 2018;97(2):477–84.
Article
CAS
PubMed
Google Scholar
Koc F, Samli H, Okur A, Ozduven M, Akyurek H, Senkoylu N. Effects of Saccharomyces cerevisiae and/or mannanoligosaccharide on performance, blood parameters and intestinal microbiota of broiler chicks. Bulg J Agric Sci. 2010;16(5):643–50.
Google Scholar
Dersjant-Li Y, Verstegen MW, Gerrits WJ. The impact of low concentrations of aflatoxin, deoxynivalenol or fumonisin in diets on growing pigs and poultry. Nutr Res Rev. 2003;16(2):223–39.
Article
CAS
PubMed
Google Scholar
Arif M, Iram A, Bhutta MA, Naiel MA, El-Hack A, Mohamed E, Othman SI, Allam AA, Amer MS, Taha AE. The biodegradation role of Saccharomyces cerevisiae against harmful effects of mycotoxin contaminated diets on broiler performance, immunity status, and carcass characteristics. Animals. 2020;10(2):238.
Article
PubMed Central
Google Scholar
Nemati Z, Karimi A, Besharati M. Effects of aflatoxin B1 and yeast cell wall supplementation on the growth performance of broilers. Int Conf Innov Chem Agric Eng. 2015;8(9):117–20.
Google Scholar
Santin E, Paulillo AC, Maiorka A, Nakaghi LS, Macari M. Evaluation of the efficacy of saccharomyces cerevísiae cell wall to ameliorate the. Int J Poult Sci. 2003;2(5):341–4.
Article
Google Scholar
Pasha TN, Farooq MU, Khattak FM, Jabbar MA, Khan AD. Effectiveness of sodium bentonite and two commercial products as aflatoxin absorbents in diets for broiler chickens. Anim Feed Sci Technol. 2007;132(1–2):103–10.
Article
CAS
Google Scholar
Partovi R, Seifi S, Pabast M, Babaei A. Effects of dietary supplementation with nanocurcumin on quality and safety of meat from broiler chicken infected with Eimeria species. J Food Saf. 2019;39(6):e12703.
Article
Google Scholar
Yiannikouris A, Apajalahti J, Siikanen O, Dillon GP, Moran CA. Saccharomyces cerevisiae cell wall-based adsorbent reduces aflatoxin B1 absorption in rats. Toxins. 2021;13(3):209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendieta CR, Gómez GV, Del Río JC, Cuevas AC, Arce JM, Ávila EG. Effect of the addition of saccharomyces cerevisiae yeast cell walls to diets with mycotoxins on the performance and immune responses of broilers. J Poult Sci. 2017;55(1):38–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Basmacioglu H, Oguz H, Ergul M, Col R, Birdane YO. Effect of dietary esterified glucomannan on performance, serum biochemistry and haematology in broilers exposed to aflatoxin. Czech J Anim Sci. 2005;50(1):31–9.
Article
CAS
Google Scholar
Dönmez N, Dönmez HH, Keskin E, Kısadere I. Effects of aflatoxin on some haematological parameters and protective effectiveness of esterified glucomannan in Merino rams. Sci World J. 2012;1:2012.
Google Scholar
Du K, Wang C, Liu P, Li Y, Ma X. Effects of dietary mycotoxins on gut microbiome. Protein Pept Lett. 2017;24(5):397–405.
Article
CAS
PubMed
Google Scholar
Rahmani M, Golian A, Kermanshahi H, Reza BM. Effects of curcumin or nanocurcumin on blood biochemical parameters, intestinal morphology and microbial population of broiler chickens reared under normal and cold stress conditions. J Appl Anim Res. 2018;46(1):200–9.
Article
CAS
Google Scholar
Partovi R, Seifi S, Pabast M, Mohajer A, Sadighara P. Effect of dietary supplementation of nanocurcumin on oxidant stability of broiler chicken breast meat infected with Eimeria species. Vet Res Forum. 2020;11(2):159 Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
PubMed
PubMed Central
Google Scholar
Denli M, Okan F. Efficacy of different adsorbents in reducing the toxic effects of aflatoxin B1 in broiler diets. S Afr J Anim Sci. 2006;36(4):222–8.
CAS
Google Scholar
Hussain Z, Rehman HU, Manzoor S, Tahir S, Mukhtar M. Determination of liver and muscle aflatoxin B1 residues and select serum chemistry variables during chronic aflatoxicosis in broiler chickens. Vet Clin Pathol. 2016;45(2):330–4.
Article
PubMed
Google Scholar
Xu F, Yu K, Yu H, Wang P, Song M, Xiu C, Li Y. Lycopene relieves AFB1-induced liver injury through enhancing hepatic antioxidation and detoxification potential with Nrf2 activation. J Funct Foods. 2017;1(39):215–24.
Article
CAS
Google Scholar
Zhao L, Deng J, Xu ZJ, Zhang WP, Khalil MM, Karrow NA, Sun LH. Mitigation of aflatoxin B1 hepatoxicity by dietary hedyotis diffusa is associated with activation of NRF2/ARE signaling in chicks. Antioxidants. 2021;10(6):878.
Article
PubMed
PubMed Central
CAS
Google Scholar
Son HL, Trang NT, Sinh DT, Anh MN. Effect of nanocurcumin particles prepared by top-down method on CCl^ sub 4^-induced hepatic fibrosis mice. Int J Pharm Sci. 2013;4(12):4542.
Google Scholar
Hassan SK, Mousa AM, Eshak MG, Farrag AE, Badawi AE. Therapeutic and chemopreventive effects of nano curcumin against diethylnitrosamine induced hepatocellular carcinoma in rats. Int J Pharm Pharm Sci. 2014;6(3):54.
Google Scholar
Al-Bishri WM. Hepato therapeutic efficacy of native curcumim and nano–curcumin: a novel therapy against hyperthyroidism induced liver oxidative and inflammatory damage in rats. Int J Adv Res. 2017;4(12):86–97.
CAS
Google Scholar
Chattopadhyay K, Samanta A, Mukhopadhyay S, Chattopadhyay B. Potential amelioration of nicotine-induced toxicity by nanocurcumin. Drug Dev Res. 2018;79(3):119–28.
Article
CAS
PubMed
Google Scholar
Rahman F, Sarma J, Mohan P, Choudhury C, Barua RN, Rahman S, Sarma M. Role of Nano-curcumin on carbon tetrachloride (CCl4) induced hepatotoxicity in rats. J Pharmacogn Phytochem. 2020;9(2):2168–76.
CAS
Google Scholar
Azizpour A, Moghadam N. Assessment of serum biochemical parameters and pathological changes in broilers with chronic aflatoxicosis fed glucomannan-containing yeast product (Mycosorb) and sodium bentonite. J Vet Res. 2015;59(2):205–11.
CAS
Google Scholar
El-Manawey MA, Yousif EY, Abo-Taleb AM, Atta AM. The effect of dietary inclusion of whole yeast, extract, and cell wall on production performance and some immunological parameters of broiler chickens. World. 2021;11(2):257–62.
Google Scholar
Barati M, Chamani M, Mousavi SN, Hoseini SA, Taj AbadiEbrahimi M. Effects of biological and mineral compounds in aflatoxin-contaminated diets on blood parameters and immune response of broiler chickens. J Appl Anim Res. 2018;46(1):707–13.
Article
CAS
Google Scholar
Abd El-Ghany WA, Hatem ME, Ismail M. Evaluation of the efficacy of feed additives to counteract the toxic effects of aflatoxicosis in broiler chickens. Int J Anim Vet Adv. 2013;5(5):171–82.
Article
CAS
Google Scholar
Gholami-Ahangaran M, Rangsaz N, Azizi S. Evaluation of turmeric (Curcuma longa) effect on biochemical and pathological parameters of liver and kidney in chicken aflatoxicosis. Pharm Biol. 2016;54(5):780–7.
Article
CAS
PubMed
Google Scholar
Naseem MN, Saleemi MK, Abbas RZ, Khan A, Khatoon A, Gul ST, Imran M, Sindhu ZU, Sultan A. Hematological and Serum Biochemical Effects of Aflatoxin B1 Intoxication in Broilers Experimentally Infected with Fowl Adenovirus-4 (FAdV-4). Pak Vet J. 2018;38(2):209–13.
Badran AM. Effect of dietary curcumin and curcumin nanoparticles supplementation on growth performance, immune response and antioxidant of broilers chickens. Egypt Poult Sci J. 2020;40(1):325–43.
Article
Google Scholar
Reda FM, El-Saadony MT, Elnesr SS, Alagawany M, Tufarelli V. Effect of dietary supplementation of biological curcumin nanoparticles on growth and carcass traits, antioxidant status, immunity and caecal microbiota of Japanese quails. Animals. 2020;10(5):754.
Article
PubMed Central
Google Scholar
Fadl SE, El-Gammal GA, Sakr OA, Salah AA, Atia AA, Prince AM, Hegazy AM. Impact of dietary Mannan-oligosaccharide and β-Glucan supplementation on growth, histopathology, E-coli colonization and hepatic transcripts of TNF-α and NF-ϰB of broiler challenged with E. coli O 78. BMC Vet Res. 2020;16(1):1–4.
Article
CAS
Google Scholar
Li XH, Chen YP, Cheng YF, Yang WL, Wen C, Zhou YM. Effect of yeast cell wall powder with different particle sizes on the growth performance, serum metabolites, immunity and oxidative status of broilers. Anim Feed Sci Technol. 2016;1(212):81–9.
Article
CAS
Google Scholar
Nikbakht Nasrabadi E, Jamaluddin R, Abdul Mutalib MS, Khaza’ai H, Khalesi S, Mohd RS. Reduction of aflatoxin level in aflatoxin-induced rats by the activity of probiotic L actobacillus casei strain S hirota. J Appl Microbiol. 2013;114(5):1507–15.
Article
CAS
PubMed
Google Scholar
Valchev I, Kanakov D, Hristov TS, Lazarov L, Binev R, Grozeva N, Nikolov Y. Effects of experimental aflatoxicosis on renal function in broiler chickens. Bulg J Vet Med. 2014;17(4):314–24.
Google Scholar
Rotimi OA, Rotimi SO, Oluwafemi F, Ademuyiwa O, Balogun EA. Oxidative stress in extrahepatic tissues of rats co-exposed to aflatoxin B1 and low protein diet. Toxicol Res. 2018;34(3):211–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karamkhani M, Asilian-Mahabadi H, Daraei B, Seidkhani-Nahal A, Noori-Zadeh A. Liver and kidney serum profile abnormalities in workers exposed to aflatoxin B1 in urban solid waste management centers. Environ Monit Assess. 2020;192(7):1–2.
Article
CAS
Google Scholar
Abdel-Latif MS, Elmeleigy KM, Khattab M, Mohamd SM. Hepatoprotective effect of coumarin and chlorophyll against aflatoxicosis in rat. J Anim Poult Prod. 2016;7(12):483–90.
Google Scholar
Abdel-Latif MS, Elmeleigy KM, Aly TA, Khattab MS, Mohamed SM. Pathological and biochemical evaluation of coumarin and chlorophyllin against aflatoxicosis in rat. Exp Toxicol Pathol. 2017;69(5):285–91.
Article
CAS
PubMed
Google Scholar
Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem. 2012;60(21):5373–9.
Article
CAS
PubMed
Google Scholar
Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity. Toxicol Sci. 2002;65(2):166–76.
Article
CAS
PubMed
Google Scholar
Peng X, Zhang S, Fang J, Cui H, Zuo Z, Deng J. Protective roles of sodium selenite against aflatoxin B1-induced apoptosis of jejunum in broilers. Int J Environ Res Public Health. 2014;11(12):13130–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Muhammad I, Li W, Sun X, Cheng P, Zhang X. Sensitivity of Arbor Acres broilers and chemoprevention of aflatoxin B1-induced liver injury by curcumin, a natural potent inducer of phase-II enzymes and Nrf2. Environ Toxicol Pharmacol. 2018;1(59):94–104.
Article
CAS
Google Scholar
Chen X. Impact of dietary modification on aflatoxicosis in poultry (Doctoral dissertation, Purdue University). 2016.
Google Scholar
Reisinger N, Ganner A, Masching S, Schatzmayr G, Applegate TJ. Efficacy of a yeast derivative on broiler performance, intestinal morphology and blood profile. Livest Sci. 2012;143(2–3):195–200.
Article
Google Scholar
Li S, Muhammad I, Yu H, Sun X, Zhang X. Detection of Aflatoxin adducts as potential markers and the role of curcumin in alleviating AFB1-induced liver damage in chickens. Ecotoxicol Environ Saf. 2019;30(176):137–45.
Article
CAS
Google Scholar
Yiannikouris A, Francois JE, Poughon L, Dussap CG, Bertin G, Jeminet G, Jouany JP. Alkali extraction of β-D-glucans from Saccharomyces cerevisiae cell wall and study of their adsorptive properties toward zearalenone. J Agric Food Chem. 2004;52(11):3666–73.
Article
CAS
PubMed
Google Scholar
Jeong WS, Kim IW, Hu R, Kong AN. Modulatory properties of various natural chemopreventive agents on the activation of NF-κB signaling pathway. Pharm Res. 2004;21(4):661–70.
Article
CAS
PubMed
Google Scholar
Ma Q, Li Y, Fan Y, Zhao L, Wei H, Ji C, Zhang J. Molecular mechanisms of lipoic acid protection against aflatoxin B1-induced liver oxidative damage and inflammatory responses in broilers. Toxins. 2015;7(12):5435–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang CZ, Wu SC, Lin CL, Kwan AL. Curcumin, encapsulated in nano-sized PLGA, down-regulates nuclear factor κB (p65) and subarachnoid hemorrhage induced early brain injury in a rat model. Brain Res. 2015;22(1608):215–24.
Article
CAS
Google Scholar
El-Gendy ZA, El-Marasy SA, Ahmed RF, El-Batran SA, Abd El-Rahman SS, Ramadan A, Youssef SA. Hepatoprotective effect of Saccharomyces Cervisciae Cell Wall Extract against thioacetamide-induced liver fibrosis in rats. Heliyon. 2021;7(6):e07159.
Article
PubMed
PubMed Central
Google Scholar
Zaki SM, Algaleel WA, Imam RA, Soliman GF, Ghoneim FM. Nano-curcumin versus curcumin in amelioration of deltamethrin-induced hippocampal damage. Histochem Cell Biol. 2020;154(2):157–75.
Article
CAS
PubMed
Google Scholar
Lesage G, Bussey H. Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2006;70(2):317–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chowdhury SR, Smith TK, Boermans HJ, Sefton AE, Downey R, Woodward B. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on performance, metabolism, hematology, and immunocompetence of ducklings. Poult Sci. 2005;84(8):1179–85.
Article
CAS
PubMed
Google Scholar
Wu Q, Jezkova A, Yuan Z, Pavlikova L, Dohnal V, Kuca K. Biological degradation of aflatoxins. Drug Metab Rev. 2009;41(1):1–7.
Article
PubMed
CAS
Google Scholar
Oğuz H, Bahcivan E, Erdoğan T. Detoxification of aflatoxin in poultry feed: an update. Eurasian J Vet Sci. 2018;34(4):204–27.
Article
Google Scholar
Limaye A, Yu RC, Chou CC, Liu JR, Cheng KC. Protective and detoxifying effects conferred by dietary selenium and curcumin against AFB1-mediated toxicity in livestock: a review. Toxins. 2018;10(1):25.
Article
PubMed Central
CAS
Google Scholar
Mohajeri M, Behnam B, Cicero AF, Sahebkar A. Protective effects of curcumin against aflatoxicosis: A comprehensive review. J Cell Physiol. 2018;233(4):3552–77.
Article
CAS
PubMed
Google Scholar
NRC. Nutrient requirements of poul. Washington: National Academy of Sci; 1994. Available in Google scholar.
Google Scholar
Ritchie BW, Harrison JG, Harrison RL. Avian medicine: principle and application. Florida, FL: Winger’s Publishing. Inc.; 1994.
Google Scholar
Bancroft JD, Gamble M. Theory and practice of histological techniques. 5th ed. Edinburgh: Churchill Livingstone; 2007.
Schuller PH, Van Egmond HP. Detection and determination of mycotoxins (Aflatoxin) in food and feed. Philadelphia: Work shop on mycotoxin Analysis Carlo; 1981.