Gardner HL, Fenger JM, London CA. Dogs as a model for Cancer. Annu Rev Anim Biosci. 2016;4:199–222.
Article
CAS
PubMed
Google Scholar
Schiffman JD, Breen M. Comparative oncology: what dogs and other species can teach us about humans with cancer. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140231.
Article
Google Scholar
Paoloni M, Khanna C. Translation of new cancer treatments from pet dogs to humans. Nat Rev Cancer. 2008;8(2):147–56.
Article
CAS
PubMed
Google Scholar
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.
Article
PubMed
Google Scholar
Moe L. Population-based incidence of mammary tumours in some dog breeds. J Reprod Fertil Suppl. 2001;57:439–43.
CAS
PubMed
Google Scholar
Gilbertson SR, Kurzman ID, Zachrau RE, Hurvitz AI, Black MM. Canine mammary epithelial neoplasms: biologic implications of morphologic characteristics assessed in 232 dogs. Vet Pathol. 1983;20(2):127–42.
Article
CAS
PubMed
Google Scholar
Priester WA, Mantel N. Occurrence of tumors in domestic animals. Data from 12 United States and Canadian colleges of veterinary medicine. J Natl Cancer Inst. 1971;47(6):1333–44.
CAS
PubMed
Google Scholar
Vascellari M, Capello K, Carminato A, Zanardello C, Baioni E, Mutinelli F. Incidence of mammary tumors in the canine population living in the Veneto region (northeastern Italy): risk factors and similarities to human breast cancer. Prev Vet Med. 2016;126:183–9.
Article
PubMed
Google Scholar
Sorenmo K. Canine mammary gland tumors. Vet Clin North Am Small Anim Pract. 2003;33(3):573–96.
Article
PubMed
Google Scholar
Karayannopoulou M, Kaldrymidou E, Constantinidis TC, Dessiris A. Adjuvant post-operative chemotherapy in bitches with mammary cancer. J Vet Med A Physiol Pathol Clin Med. 2001;48(2):85–96.
Article
CAS
PubMed
Google Scholar
Cassali GD, Lavalle GE, De Nardi AB, Ferreira E, Bertagnolli AC, Estrela-Lima A, et al. Consensus for the diagnosis, prognosis and treatment of canine mammary tumors. Br J Vet Pathol. 2011;4:153–80.
Google Scholar
Pawlowski KM, Mucha J, Majchrzak K, Motyl T, Krol M. Expression and role of PGP, BCRP, MRP1 and MRP3 in multidrug resistance of canine mammary cancer cells. BMC Vet Res. 2013;9:119.
Article
PubMed
PubMed Central
CAS
Google Scholar
Honscha KU, Schirmer A, Reischauer A, Schoon HA, Einspanier A, Gabel G. Expression of ABC-transport proteins in canine mammary cancer: consequences for chemotherapy. Reprod Domest Anim. 2009;44(Suppl 2):218–23.
Article
PubMed
Google Scholar
Pang LY, Cervantes-Arias A, Else RW, Argyle DJ. Canine mammary Cancer stem cells are radio- and chemo- resistant and exhibit an epithelial-Mesenchymal transition phenotype. Cancers (Basel). 2011;3(2):1744–62.
Article
CAS
Google Scholar
Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438(7069):803–19.
Article
CAS
PubMed
Google Scholar
Setoguchi A, Sakai T, Okuda M, Minehata K, Yazawa M, Ishizaka T, et al. Aberrations of the p53 tumor suppressor gene in various tumors in dogs. Am J Vet Res. 2001;62(3):433–9.
Article
CAS
PubMed
Google Scholar
Haga S, Nakayama M, Tatsumi K, Maeda M, Imai S, Umesako S, et al. Overexpression of the p53 gene product in canine mammary tumors. Oncol Rep. 2001;8(6):1215–9.
CAS
PubMed
Google Scholar
London CA, Kisseberth WC, Galli SJ, Geissler EN, Helfand SC. Expression of stem cell factor receptor (c-kit) by the malignant mast cells from spontaneous canine mast cell tumours. J Comp Pathol. 1996;115(4):399–414.
Article
CAS
PubMed
Google Scholar
London CA, Galli SJ, Yuuki T, Hu ZQ, Helfand SC, Geissler EN. Spontaneous canine mast cell tumors express tandem duplications in the proto-oncogene c-kit. Exp Hematol. 1999;27(4):689–97.
Article
CAS
PubMed
Google Scholar
Kaszak I, Ruszczak A, Kanafa S, Kacprzak K, Krol M, Jurka P. Current biomarkers of canine mammary tumors. Acta Vet Scand. 2018;60(1):66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Enginler SO, Akis I, Toydemir TS, Oztabak K, Haktanir D, Gunduz MC, et al. Genetic variations of BRCA1 and BRCA2 genes in dogs with mammary tumours. Vet Res Commun. 2014;38(1):21–7.
Article
CAS
PubMed
Google Scholar
Rivera P, Melin M, Biagi T, Fall T, Haggstrom J, Lindblad-Toh K, et al. Mammary tumor development in dogs is associated with BRCA1 and BRCA2. Cancer Res. 2009;69(22):8770–4.
Article
CAS
PubMed
Google Scholar
Yoshikawa Y, Morimatsu M, Ochiai K, Ishiguro-Oonuma T, Wada S, Orino K, et al. Reduced canine BRCA2 expression levels in mammary gland tumors. BMC Vet Res. 2015;11:159.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378(6559):789–92.
Article
CAS
PubMed
Google Scholar
Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science. 1994;265(5181):2088–90.
Article
CAS
PubMed
Google Scholar
Prakash R, Zhang Y, Feng W, Jasin M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol. 2015;7(4):a016600.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shailani A, Kaur RP, Munshi A. A comprehensive analysis of BRCA2 gene: focus on mechanistic aspects of its functions, spectrum of deleterious mutations, and therapeutic strategies targeting BRCA2-deficient tumors. Med Oncol. 2018;35(3):18.
Article
PubMed
CAS
Google Scholar
Ochiai K, Yoshikawa Y, Oonuma T, Tomioka Y, Hashizume K, Morimatsu M. Interactions between canine RAD51 and full length or truncated BRCA2 BRC repeats. Vet J. 2011;190(2):293–5.
Article
CAS
PubMed
Google Scholar
Ochiai K, Morimatsu M, Yoshikawa Y, Syuto B, Hashizume K. BRCA2 C-terminus interacts with Rad51 and contributes to nuclear focus formation in double-strand break repair of DNA. Biomed Res. 2004;25:269–75.
Article
CAS
Google Scholar
Foulkes WD. Inherited susceptibility to common cancers. N Engl J Med. 2008;359(20):2143–53.
Article
CAS
PubMed
Google Scholar
Toland AE, Forman A, Couch FJ, Culver JO, Eccles DM, Foulkes WD, et al. Clinical testing of BRCA1 and BRCA2: a worldwide snapshot of technological practices. NPJ Genom Med. 2018;3:7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7.
Article
CAS
PubMed
Google Scholar
Luder Ripoli F, Conradine Hammer S, Mohr A, Willenbrock S, Hewicker-Trautwein M, Brenig B, et al. Multiplex Gene Expression Profiling of 16 Target Genes in Neoplastic and Non-Neoplastic Canine Mammary Tissues Using Branched-DNA Assay. Int J Mol Sci. 2016;17(9):1589.
Article
PubMed Central
CAS
Google Scholar
Maia AT, Antoniou AC, O'Reilly M, Samarajiwa S, Dunning M, Kartsonaki C, et al. Effects of BRCA2 cis-regulation in normal breast and cancer risk amongst BRCA2 mutation carriers. Breast Cancer Res. 2012;14(2):R63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu L, Fang Y, Fan J, Hu J, Xu X, Jin X, et al. BRCA2 promoter polymorphism is associated with breast cancer prognosis in Chinese women. Chin Med J. 2014;127(11):2012–5.
CAS
PubMed
Google Scholar
Popp MW, Maquat LE. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev Genet. 2013;47:139–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ware MD, DeSilva D, Sinilnikova OM, Stoppa-Lyonnet D, Tavtigian SV, Mazoyer S. Does nonsense-mediated mRNA decay explain the ovarian cancer cluster region of the BRCA2 gene? Oncogene. 2006;25(2):323–8.
Article
CAS
PubMed
Google Scholar
Yoshikawa Y, Morimatsu M, Ochiai K, Nagano M, Yamane Y, Tomizawa N, et al. Insertion/deletion polymorphism in the BRCA2 nuclear localization signal. Biomed Res. 2005;26(3):109–16.
Article
CAS
PubMed
Google Scholar
Yoshikawa Y, Morimatsu M, Ochiai K, Nagano M, Yamane Y, Tomizawa N, et al. Analysis of genetic variations in the exon 27 region of the canine BRCA2 locus. J Vet Med Sci. 2005;67(10):1013–7.
Article
CAS
PubMed
Google Scholar
Yoshikawa Y, Morimatsu M, Ochiai K, Nagano M, Tomioka Y, Sasaki N, et al. Novel variations and loss of heterozygosity of BRCA2 identified in a dog with mammary tumors. Am J Vet Res. 2008;69(10):1323–8.
Article
CAS
PubMed
Google Scholar
Hsu WL, Huang YH, Chang TJ, Wong ML, Chang SC. Single nucleotide variation in exon 11 of canine BRCA2 in healthy and cancerous mammary tissue. Vet J. 2010;184(3):351–6.
Article
CAS
PubMed
Google Scholar
Yoshikawa Y, Ochiai K, Morimatsu M, Suzuki Y, Wada S, Taoda T, et al. Effects of the missense mutations in canine BRCA2 on BRC repeat 3 functions and comparative analyses between canine and human BRC repeat 3. PLoS One. 2012;7(10):e45833.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yano K, Morotomi K, Saito H, Kato M, Matsuo F, Miki Y. Nuclear localization signals of the BRCA2 protein. Biochem Biophys Res Commun. 2000;270(1):171–5.
Article
CAS
PubMed
Google Scholar
Spain BH, Larson CJ, Shihabuddin LS, Gage FH, Verma IM. Truncated BRCA2 is cytoplasmic: implications for cancer-linked mutations. Proc Natl Acad Sci U S A. 1999;96(24):13920–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bignell G, Micklem G, Stratton MR, Ashworth A, Wooster R. The BRC repeats are conserved in mammalian BRCA2 proteins. Hum Mol Genet. 1997;6(1):53–8.
Article
CAS
PubMed
Google Scholar
Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315(5811):525–8.
Article
CAS
PubMed
Google Scholar
Komar AA. Silent SNPs: impact on gene function and phenotype. Pharmacogenomics. 2007;8(8):1075–80.
Article
CAS
PubMed
Google Scholar
Maues T, El-Jaick KB, Costa FB, Araujo GEF, Soares MVG, Moreira AS, et al. Common germline haplotypes and genotypes identified in BRCA2 exon 11 of dogs with mammary tumours and histopathological analyses. Vet Comp Oncol. 2018;16(3):379–84.
Article
CAS
PubMed
Google Scholar
Bieche I, Nogues C, Lidereau R. Overexpression of BRCA2 gene in sporadic breast tumours. Oncogene. 1999;18(37):5232–8.
Article
CAS
PubMed
Google Scholar
Maacke H, Opitz S, Jost K, Hamdorf W, Henning W, Kruger S, et al. Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer. Int J Cancer. 2000;88(6):907–13.
Article
CAS
PubMed
Google Scholar
Ochiai K, Morimatsu M, Tomizawa N, Syuto B. Cloning and sequencing full length of canine Brca2 and Rad51 cDNA. J Vet Med Sci. 2001;63(10):1103–8.
Article
CAS
PubMed
Google Scholar
Ochiai K, Ishiguro-Oonuma T, Yoshikawa Y, Udagawa C, Kato Y, Watanabe M, et al. Polymorphisms of canine BRCA2 BRC repeats affecting interaction with RAD51. Biomed Res. 2015;36(2):155–8.
Article
CAS
PubMed
Google Scholar
Ozmen O, Kul S, Risvanli A, Ozalp G, Sabuncu A, Kul O. Somatic SNPs of the BRCA2 gene at the fragments encoding RAD51 binding sites of canine mammary tumors. Vet Comp Oncol. 2017;15(4):1479–86.
Article
CAS
PubMed
Google Scholar
Allen SW, Mahaffey EA. Canine mammary neoplasia: prognostic indicators and responseto surgical therapy. J Am Anim Hosp Assoc. 1989;25:540–6.
Google Scholar
Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.
Article
CAS
PubMed
Google Scholar
Pommier Y, O'Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med. 2016;8(362):362ps17.
Article
PubMed
CAS
Google Scholar
Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murai J, Huang SY, Renaud A, Zhang Y, Ji J, Takeda S, et al. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol Cancer Ther. 2014;13(2):433–43.
Article
CAS
PubMed
Google Scholar
Plummer R, Lorigan P, Steven N, Scott L, Middleton MR, Wilson RH, et al. A phase II study of the potent PARP inhibitor, Rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemopotentiation. Cancer Chemother Pharmacol. 2013;71(5):1191–9.
Article
CAS
PubMed
Google Scholar
Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34.
Article
CAS
PubMed
Google Scholar
Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235–44.
Article
CAS
PubMed
Google Scholar
Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010;376(9737):245–51.
Article
CAS
PubMed
Google Scholar
Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmana J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50.
Article
CAS
PubMed
Google Scholar
Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T, et al. FDA approval summary: Olaparib Monotherapy in patients with deleterious Germline BRCA-mutated advanced ovarian Cancer treated with three or more lines of chemotherapy. Clin Cancer Res. 2015;21(19):4257–61.
Article
CAS
PubMed
Google Scholar
Balasubramaniam S, Beaver JA, Horton S, Fernandes LL, Tang S, Horne HN, et al. FDA approval summary: Rucaparib for the treatment of patients with deleterious BRCA mutation-associated advanced ovarian Cancer. Clin Cancer Res. 2017;23(23):7165–70.
Article
CAS
PubMed
Google Scholar
Ison G, Howie LJ, Amiri-Kordestani L, Zhang L, Tang S, Sridhara R, et al. FDA approval summary: Niraparib for the maintenance treatment of patients with recurrent ovarian Cancer in response to platinum-based chemotherapy. Clin Cancer Res. 2018;24(17):4066–71.
Article
CAS
PubMed
Google Scholar
Hoy SM. Talazoparib: First Global Approval. Drugs. 2018;78(18):1939–46.
Article
PubMed
Google Scholar
Jaspers JE, Kersbergen A, Boon U, Sol W, van Deemter L, Zander SA, et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov. 2013;3(1):68–81.
Article
CAS
PubMed
Google Scholar
Xu G, Chapman JR, Brandsma I, Yuan J, Mistrik M, Bouwman P, et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature. 2015;521(7553):541–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature. 2008;451(7182):1111–5.
Article
CAS
PubMed
Google Scholar
Barber LJ, Sandhu S, Chen L, Campbell J, Kozarewa I, Fenwick K, et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J Pathol. 2013;229(3):422–9.
Article
CAS
PubMed
Google Scholar
Pettitt SJ, Rehman FL, Bajrami I, Brough R, Wallberg F, Kozarewa I, et al. A genetic screen using the PiggyBac transposon in haploid cells identifies Parp1 as a mediator of olaparib toxicity. PLoS One. 2013;8(4):e61520.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hurwitz M, Stauffer P. Hyperthermia, radiation and chemotherapy: the role of heat in multidisciplinary cancer care. Semin Oncol. 2014;41(6):714–29.
Article
PubMed
Google Scholar
Vaupel PW, Otte J, Manz R. Oxygenation of malignant tumors after localized microwave hyperthermia. Radiat Environ Biophys. 1982;20(4):289–300.
Article
CAS
PubMed
Google Scholar
Horsman MR, Overgaard J. Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol (R Coll Radiol). 2007;19(6):418–26.
Article
CAS
Google Scholar
Oei AL, Vriend LE, Crezee J, Franken NA, Krawczyk PM. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat Oncol. 2015;10:165.
Article
PubMed
PubMed Central
CAS
Google Scholar
van den Tempel N, Odijk H, van Holthe N, Naipal K, Raams A, Eppink B, et al. Heat-induced BRCA2 degradation in human tumours provides rationale for hyperthermia-PARP-inhibitor combination therapies. Int J Hyperth. 2018;34(4):407–14.
Article
CAS
Google Scholar
Krawczyk PM, Eppink B, Essers J, Stap J, Rodermond H, Odijk H, et al. Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci U S A. 2011;108(24):9851–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eppink B, Krawczyk PM, Stap J, Kanaar R. Hyperthermia-induced DNA repair deficiency suggests novel therapeutic anti-cancer strategies. Int J Hyperth. 2012;28(6):509–17.
Article
CAS
Google Scholar
Oei AL, Ahire VR, van Leeuwen CM, Ten Cate R, Stalpers LJA, Crezee J, et al. Enhancing radiosensitisation of BRCA2-proficient and BRCA2-deficient cell lines with hyperthermia and PARP1-i. Int J Hyperth. 2018;34(1):39–48.
Article
CAS
Google Scholar
Saba C, Paoloni M, Mazcko C, Kisseberth W, Burton JH, Smith A, et al. A comparative oncology study of Iniparib defines its pharmacokinetic profile and biological activity in a naturally-occurring canine Cancer model. PLoS One. 2016;11(2):e0149194.
Article
PubMed
PubMed Central
CAS
Google Scholar
Patel AG, De Lorenzo SB, Flatten KS, Poirier GG, Kaufmann SH. Failure of iniparib to inhibit poly(ADP-ribose) polymerase in vitro. Clin Cancer Res. 2012;18(6):1655–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuang HC, Kapuriya N, Kulp SK, Chen CS, Shapiro CL. Differential anti-proliferative activities of poly(ADP-ribose) polymerase (PARP) inhibitors in triple-negative breast cancer cells. Breast Cancer Res Treat. 2012;134(2):649–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mateo J, Ong M, Tan DS, Gonzalez MA, de Bono JS. Appraising iniparib, the PARP inhibitor that never was--what must we learn? Nat Rev Clin Oncol. 2013;10(12):688–96.
Article
CAS
PubMed
Google Scholar
Zhong L, Tran AT, Tomasino T, Nugent E, Smith JA. Cost-effectiveness of Niraparib and Olaparib as maintenance therapy for patients with platinum-sensitive recurrent ovarian Cancer. J Manag Care Spec Pharm. 2018;24(12):1219–28.
PubMed
Google Scholar
Smith HJ, Walters Haygood CL, Arend RC, Leath CA 3rd, Straughn JM Jr. PARP inhibitor maintenance therapy for patients with platinum-sensitive recurrent ovarian cancer: a cost-effectiveness analysis. Gynecol Oncol. 2015;139(1):59–62.
Article
CAS
PubMed
Google Scholar
Bitler BG, Watson ZL, Wheeler LJ, Behbakht K. PARP inhibitors: clinical utility and possibilities of overcoming resistance. Gynecol Oncol. 2017;147(3):695–704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pujade-Lauraine E, Ledermann JA, Selle F, Gebski V, Penson RT, Oza AM, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(9):1274–84.
Article
CAS
PubMed
Google Scholar
Arnold K, Kim MK, Frerk K, Edler L, Savelyeva L, Schmezer P, et al. Lower level of BRCA2 protein in heterozygous mutation carriers is correlated with an increase in DNA double strand breaks and an impaired DSB repair. Cancer Lett. 2006;243(1):90–100.
Article
CAS
PubMed
Google Scholar
King MC, Marks JH, Mandell JB. New York breast Cancer study G. breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–6.
Article
CAS
PubMed
Google Scholar