Boerman J, Potts S, VandeHaar M, Allen M, Lock A. Milk production responses to a change in dietary starch concentration vary by production level in dairy cattle. J Dairy Sci. 2015;98:4698–706.
Article
CAS
PubMed
Google Scholar
Plaizier J, Khafipour E, Li S, Gozho G, Krause D. Subacute ruminal acidosis (SARA), endotoxins and health consequences. Anim Feed Sci Tech. 2012;172:9–21.
Article
CAS
Google Scholar
Ye H, Liu J, Feng P, Zhu W, Mao S. Grain-rich diets altered the colonic fermentation and mucosa-associated bacterial communities and induced mucosal injuries in goats. Scientific Reports. 2016; 6.
Gozho G, Plaizier J, Krause D, Kennedy A, Wittenberg K. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J Dairy Sci. 2005;88:1399–403.
Article
CAS
PubMed
Google Scholar
Khafipour E, Krause D, Plaizier J. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J Dairy Sci. 2009;92:1060–70.
Article
CAS
PubMed
Google Scholar
Emmanuel D, Madsen K, Churchill T, Dunn S, Ametaj B. Acidosis and lipopolysaccharide from Escherichia coli B: 055 cause hyperpermeability of rumen and colon tissues. J Dairy Sci. 2007;90:5552–7.
Article
CAS
PubMed
Google Scholar
Malhi M, Gui H, Yao L, Aschenbach JR, Gäbel G, Shen Z. Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion. J Dairy Sci. 2013;96:7603–16.
Article
CAS
PubMed
Google Scholar
Pitman RS, Blumberg RS. First line of defense: the role of the intestinal epithelium as an active component of the mucosal immune system. J Gastroenterology. 2000;35:805–14.
Article
CAS
Google Scholar
Gressley T, Hall MB, Armentano L. Ruminant Nutrition Symposium: Productivity, digestion, and health responses to hindgut acidosis in ruminants. J Anim Sci. 2011;89:1120–30. .
Article
CAS
PubMed
Google Scholar
Tao S, Duanmu Y, Dong H, Ni Y, Chen J, Shen X, Zhao R. High concentrate diet induced mucosal injuries by enhancing epithelial apoptosis and inflammatory response in the hindgut of goats. PloS one. 2014;9:111596.
Article
CAS
Google Scholar
Murphy MP. How mitochondria produce reactive oxygen species. Biochemical J. 2009;417:1–13.
Article
CAS
Google Scholar
Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B. Integrative genomic profiling of human prostate cancer. Cancer cell. 2010;18:11–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tao S, Duanmu Y, Dong H, Tian J, Ni Y, Zhao R. A high-concentrate diet induced colonic epithelial barrier disruption is associated with the activating of cell apoptosis in lactating goats. BMC Vet Res. 2014;10:235.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fairweather-Tait SJ, Collings R, Hurst R. Selenium bioavailability: current knowledge and future research requirements. Am J Clinical Nutr. 2010;91:1484S–1491S.
Article
CAS
Google Scholar
Pandir D, Bekdemir FO, Doğanyiğit Z, Per S. Protective Effects of Sodium Selenite and Vitamin-E on LPS Induced Endotoxemia of Rats. ARC J Nut Growth. 2017;2:19–25.
Google Scholar
Chung J, Kim J, Ko Y, Jang I. Effects of dietary supplemented inorganic and organic selenium on antioxidant defense systems in the intestine, serum, liver and muscle of Korean native goats. Asian-aus J Anim Sci. 2006;20:52–9.
Article
Google Scholar
Zhang L, Zhou ZQ, Li G, Fu MZ. The effect of deposition Se on the mRNA expression levels of GPxs in goats from a Se-enriched county of China. Biol Trace Elem Res. 2013;156:111–23.
Article
CAS
PubMed
Google Scholar
Samo SP, Malhi M, Gadahi J, Lei Y, Kaciwal AB, Soomro SA. Effect of Organic Selenium Supplementation in Diet on Gastrointestinal Tract Performance and Meat Quality of Goat. Pak J Zool. 2018; 50.
Hernández-Calva L, Guerrero-Legarreta M, Pérez-Chabela M, López-Arellano R, Ramírez-Bribiesca J. Interaction of dietary selenium and magnesium level on digestive function in lambs fed high-concentrate diets. J Applied Anim Res. 2007;31:41–6.
Article
Google Scholar
Del Razo-Rodriguez O, Ramirez-Bribiesca J, Lopez-Arellano R, Revilla-Vazquez A, Gonzalez-Munoz S, Cobos-Peralta M, Hernandez-Calva L, McDowell L. Effects of dietary level of selenium and grain on digestive metabolism in lambs. Czech J Anim Sci. 2013;58:253–61.
Article
Google Scholar
Juniper DT, Phipps RH, Givens DI, Jones AK, Green C, Bertin G. Tolerance of ruminant animals to high dose in-feed administration of a selenium-enriched yeast. J Anim Sci. 2008;86:197–204.
Article
CAS
PubMed
Google Scholar
Waters DJ, Shen S, Cooley DM, Bostwick DG, Qian J, Combs GF Jr, Glickman LT, Oteham C, Schlittler D, Morris JS. Effects of dietary selenium supplementation on DNA damage and apoptosis in canine prostate. J National Cancer Ins. 2003;95:237–41.
Article
CAS
Google Scholar
Ibeagha A, Ibeagha-Awemu E, Mehrzad J, Baurhoo B, Kgwatalala P, Zhao X. The effect of selenium sources and supplementation on neutrophil functions in dairy cows. Anim. 2009;3:1037–43.
Article
CAS
Google Scholar
Hu P, Zuo Z, Wang F, Peng X, Guan K, Li H, Fang J, Cui H, Su G, Ouyang P. The Protective Role of Selenium in AFB 1-Induced Tissue Damage and Cell Cycle Arrest in Chicken’s Bursa of Fabricius. Biol Trace Elem Res. 2018;185:486–96.
Article
CAS
PubMed
Google Scholar
Dkhil MA, Bauomy AA, Diab MS, Al-Quraishy S. Protective role of selenium nanoparticles against Schistosoma mansoniinduced hepatic injury in mice. Inter J Medical Sci. 2016; 27.
Mehta U, Kang B, Bansal G, Bansal M. Studies of apoptosis and bcl-2 in experimental atherosclerosis in rabbit and influence of selenium supplementation. General Physiol Biophysics. 2002;21:15–30.
CAS
Google Scholar
Liu F, Cottrell JJ, Furness JB, Rivera LR, Kelly FW, Wijesiriwardana U, Pustovit RV, Fothergill LJ, Bravo DM, Celi P. Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs. Exp Physio. 2016;101:801–10.
Article
CAS
Google Scholar
Chauhan SS, Celi P, Leury BJ, Clarke IJ, Dunshea FR. Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep. J Anim Sci. 2014;92:3364–74.
Article
CAS
PubMed
Google Scholar
Chauhan S, Celi P, Leury B, Dunshea F. High dietary selenium and vitamin E supplementation ameliorates the impacts of heat load on oxidative status and acid-base balance in sheep. J Anim Sci. 2015;93:3342–54.
Article
CAS
PubMed
Google Scholar
Chauhan S, Celi P, Fahri F, Leury B, Dunshea F. Dietary antioxidants at supranutritional doses modulate skeletal muscle heat shock protein and inflammatory gene expression in sheep exposed to heat stress. J Anim Sci. 2014;92:4897–908.
Article
CAS
PubMed
Google Scholar
Chauhan S, Ponnampalam E, Celi P, Hopkins D, Leury B, Dunshea F. High dietary vitamin E and selenium improves feed intake and weight gain of finisher lambs and maintains redox homeostasis under hot conditions. Small Ruminant Res. 2016;137:17–23.
Article
Google Scholar
Wang B, Jia M, Fang L, Jiang L, Li Y. Effects of eucalyptus oil and anise oil supplementation on rumen fermentation characteristics, methane emission, and digestibility in sheep. J Anim Sci. 2018;96:3460–70.
PubMed
PubMed Central
Google Scholar
Plaizier JC, Li S, Tun HM, Khafipour E. Nutritional models of experimentally-induced subacute ruminal acidosis (SARA) differ in their impact on rumen and hindgut bacterial communities in dairy cows. Frontiers in Microbiol. 2017;7:21–8.
Article
Google Scholar
Wang C, Liu Q, Yang W, Dong Q, Yang X, He D, Zhang P, Dong K, Huang Y. Effects of selenium yeast on rumen fermentation, lactation performance and feed digestibilities in lactating dairy cows. Livestock Sci. 2009;126:239–44.
Article
Google Scholar
Li S, Khafipour E, Krause D, Kroeker A, Rodriguez-Lecompte J, Gozho G, Plaizier J. Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. J Dairy Sci. 2012;95:294–303.
Article
CAS
PubMed
Google Scholar
Metzler-Zebeli BU, Schmitz-Esser S, Klevenhusen F, Podstatzky-Lichtenstein L, Wagner M, Zebeli Q. Grain-rich diets differently alter ruminal and colonic abundance of microbial populations and lipopolysaccharide in goats. Anaerobe. 2013;20:65–73.
Article
CAS
PubMed
Google Scholar
Mao SY, Huo WJ, Zhu WY. Microbiome–metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environmental Microbiol. 2016;18:525–41.
Article
CAS
Google Scholar
Čobanová K, Faix Š, Plachá I, Mihaliková K, Váradyová Z, Kišidayová S. Grešáková Ľ.Effects of different dietary selenium sources on antioxidant status and blood phagocytic activity in sheep. Biol Trace Elem Res. 2017;175:339–46.
Article
PubMed
CAS
Google Scholar
Panev A, Hauptmanová K, Pavlata L, Pechová A, Filípek J, Dvorak R. Effect of supplementation of various selenium forms and doses on selected parameters of ruminal fluid and blood in sheep. Czech J Anim Sci. 2013;58:37–46.
Article
CAS
Google Scholar
Galbraith M, Vorachek W, Estill C, Whanger P, Bobe G, Davis T, Hall J. Rumen microorganisms decrease bioavailability of inorganic selenium supplements. Biol Trace Elem Res. 2016;171:338–43.
Article
CAS
PubMed
Google Scholar
Mainville A, Odongo N, Bettger W, McBride B, Osborne V. Selenium uptake by ruminal microorganisms from organic and inorganic sources in dairy cows. Can J Anim Sci. 2009;89:105–10.
Article
CAS
Google Scholar
Koenig K, Rode L, Cohen R, Buckley W. Effects of diet and chemical form of selenium on selenium metabolism in sheep. J Anim Sci. 1997;75:817–27.
Article
CAS
PubMed
Google Scholar
Klevenhusen F, Hollmann M, Podstatzky-Lichtenstein L, Krametter-Frötscher R, Aschenbach JR, Zebeli Q. Feeding barley grain-rich diets altered electrophysiological properties and permeability of the ruminal wall in a goat model. J Dairy Sci. 2013;96:2293–302.
Article
CAS
PubMed
Google Scholar
Liu J, Xu T, Liu Y, Zhu W, Mao S. A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats. Am J Physiology-Heart Circulatory Physiol. 2013;305:232–41.
Google Scholar
Aschenbach J, Gäbel G. Effect and absorption of histamine in sheep rumen: Significance of acidotic epithelial damage. J Anim Sci. 2000;78:464–70.
Article
CAS
PubMed
Google Scholar
Abaker J, Xu T, Jin D, Chang G, Zhang K, Shen X. Lipopolysaccharide derived from the digestive tract provokes oxidative stress in the liver of dairy cows fed a high-grain diet. J Dairy Sci. 2017;100:666–78.
Article
CAS
PubMed
Google Scholar
Teama FEI. Evaluation of some oxidative-stress and antioxidant markers in goats during estrous cycle under Egyptian environmental conditions. Revista Brasileira de Zootecnia 2018; 47.
Ighodaro O, Akinloye O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med. 2018;54:287–93.
Article
Google Scholar
Guo Y, Xu X, Zou Y, Yang Z, Li S, Cao Z. Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp. J Anim Sci Biotech. 2013;4:31.
Article
CAS
Google Scholar
Kudva AK, Shay AE, Prabhu KS. Selenium and inflammatory bowel disease. Am J Physiology-Gastrointestinal Liver Physiol. 2015;309:71–7.
Article
CAS
Google Scholar
Lee JM, Chun HJ, Choi HS, Kim ES, Seo YS, Jeen YT, Lee HS, Um SH, Kim CH, Sul D. Selenium administration attenuates 5-flurouracil-induced intestinal mucositis. Nutr Cancer. 2017;69:616–22.
Article
CAS
PubMed
Google Scholar
Ahmed Z, Malhi M, Soomro S, Gandahi J, Arijo A, Bhutto B, Qureshi T. Dietary selenium yeast supplementation improved some villi morphological characteristics in duodenum and jejunum of young goats. JAPS J Anim Plant Sci. 2016;26:382–7.
CAS
Google Scholar
Droin NM, Green DR. Role of Bcl-2 family members in immunity and disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Res. 2004;1644:179–88. .
Article
CAS
Google Scholar
Tao S, Tian J, Cong R, Sun L, Duanmu Y, Dong H, Ni Y, Zhao R. Activation of cellular apoptosis in the caecal epithelium is associated with increased oxidative reactions in lactating goats after feeding a high-concentrate diet. Experimental Physiol. 2015;100:278–87.
Article
CAS
Google Scholar
Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell. 2006;10:241–52.
Article
CAS
PubMed
Google Scholar
Dieho K, van Baal J, Kruijt L, Bannink A, Schonewille J, Carreño D, Hendriks W, Dijkstra J. Effect of supplemental concentrate during the dry period or early lactation on rumen epithelium gene and protein expression in dairy cattle during the transition period. J Dairy Sci. 2017;100:7227–45.
Article
CAS
PubMed
Google Scholar
Gui H, Shen Z. Concentrate diet modulation of ruminal genes involved in cell proliferation and apoptosis is related to combined effects of short-chain fatty acid and pH in rumen of goats. J Dairy Sci. 2016;99:6627–38.
Article
CAS
PubMed
Google Scholar
Xu L, Wang Y, Liu J, Zhu W, Mao S. Morphological adaptation of sheep’s rumen epithelium to high-grain diet entails alteration in the expression of genes involved in cell cycle regulation, cell proliferation and apoptosis. J Anim Sci Biotech. 2018;9:32.
Article
CAS
Google Scholar
Bender CE, Fitzgerald P, Tait SW, Llambi F, McStay GP, Tupper DO, Pellettieri J, Alvarado AS, Salvesen GS, Green DR. Mitochondrial pathway of apoptosis is ancestral in metazoans. Proceedings National Acad Sci. 2012;109:4904–9. .
Article
CAS
Google Scholar
Hua C, Tian J, Tian P, Cong R, Luo Y, Geng Y, Tao S, Ni Y, Zhao R. Feeding a high concentration diet induces unhealthy alterations in the composition and metabolism of ruminal microbiota and host response in a goat model. Frontiers in Microbiol. 2017;8:138.
Google Scholar
Taylor J. Time-dependent influence of supranutritional organically bound selenium on selenium accumulation in growing wether lambs. J Anim Sci. 2005;83:1186–93.
Article
CAS
PubMed
Google Scholar
Zhao G, Nyman M, Åke Jönsson J. Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water‐extraction and direct‐injection gas chromatography. Biomed Chromatogr. 2006;20:674–82.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar