Mann NJ, Ponnampalam EN, Yep Y, Sinclair AJ: Feeding regimes affect fatty acid composition in Australian beef cattle. Asia Pac J Clin Nutr. 2003, 12: S38.
Google Scholar
Gustafson GM: Effects of daily exercise on the health of tied dairy cows. Prev Vet Med. 1993, 17: 209-223. 10.1016/0167-5877(93)90030-W.
Article
Google Scholar
Regula G, Danuser J, Spycher B, Wechsler B: Health and welfare of dairy cows in different husbandry systems in Switzerland. Prev Vet Med. 2004, 66: 247-264. 10.1016/j.prevetmed.2004.09.004.
Article
CAS
PubMed
Google Scholar
Kleinbeck SN, McGlone JJ: Intensive indoor versus outdoor swine production systems: genotype and supplemental iron effects on blood hemoglobin and selected immune measures in young pigs. J Anim Sci. 1999, 77: 2384-2390.
CAS
PubMed
Google Scholar
Call DR, Davis MA, Sawant AA: Antimicrobial resistance in beef and dairy cattle production. Anim Health Res Rev. 2008, 9: 159-167. 10.1017/S1466252308001515.
Article
PubMed
Google Scholar
Colditz IG: Effects of the immune system on metabolism: implications for production and disease resistance in livestock. Livestock Prod Sci. 2002, 75: 257-268. 10.1016/S0301-6226(01)00320-7.
Article
Google Scholar
Meglia GE, Johannisson A, Agenas S, Holtenius K, Waller KP: Effects of feeding intensity during the dry period on leukocyte and lymphocyte sub-populations, neutrophil function and health in periparturient dairy cows. Vet J. 2005, 169 (3): 376-84. 10.1016/j.tvjl.2004.02.003.
Article
CAS
PubMed
Google Scholar
Wistuba TJ, Kegley EB, Apple JK, Davis ME: Influence of fish oil supplementation on growth and immune system characteristics of cattle. J Anim Sci. 2005, 83 (5): 1097-101.
CAS
PubMed
Google Scholar
Hirschowitz BI: Pepsinogen in the blood. J Lab Clin Med. 1955, 46: 568.
CAS
PubMed
Google Scholar
Ross JG, Purcell DA, Dow C, Todd JR: Experimental infections of calves with Trichostrongylus axei; the course and development of infection and lesions in low level infections. Res Vet Sci. 1967, 8: 201-206.
CAS
PubMed
Google Scholar
Fisher AD, Crowe MA, O'Nuallain EM, Monaghan ML, Larkin JA, O'Kiely P, Enwright WJ: Effects of cortisol on in vitro interferon-γ production, acute phase proteins, growth, and feed intake in a calf castration model. J Anim Sci. 1997, 75: 1041-1047.
CAS
PubMed
Google Scholar
Ting STL, Earley B, Crowe MA: Effects of repeated ketoprofen administration during surgical castration of bulls on cortisol, immunological function, feed intake, growth and behaviour. J Anim Sci. 2003, 81: 1253-1264.
CAS
PubMed
Google Scholar
Wood PR, Corner LA, Plackett P: Development of a simple, rapid in vitro cellular assay for bovine tuberculosis based on the production of gamma interferon. Res Vet Sci. 1990, 49: 46-49.
CAS
PubMed
Google Scholar
Rothel JS, Jones SL, Corner LA, Cox JC, Wood PR: A sandwich enzyme immunoassay for bovine interferon-gamma and its use for the detection of tuberculosis in cattle. Aust Vet J. 1990, 67: 134-137. 10.1111/j.1751-0813.1990.tb07730.x.
Article
CAS
PubMed
Google Scholar
Giemsa G: Färbemethoden für malariaparasiten. Zentralbl Bakteriol. 1902, 31: 429-430.
Google Scholar
Hughesdon PE: Two uses of uranyl nitrate. J R Microsc Soc. 1949, 69: 1-8.
Article
CAS
PubMed
Google Scholar
O'Gorman GM, Park SDE, Hill EW, Meade KG, Mitchell LC, Agaba M, Gibson JP, Hanotte O, Naessens J, Kemp SJ, MacHugh DE: Cytokine mRNA profiling of peripheral blood mononuclear cells from trypanotolerant and trypanosusceptible cattle infected with Trypanosoma congolense. Physiol Genomics. 2006, 28: 53-61. 10.1152/physiolgenomics.00100.2006.
Article
PubMed
Google Scholar
Robinson TL, Sutherland IA, Sutherland J: Validation of candidate bovine reference genes for use with real-time PCR. Vet Immunol Immunopathol. 2007, 115: 160-165. 10.1016/j.vetimm.2006.09.012.
Article
CAS
PubMed
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geaometric averaging of multiple internal control genes. Genome Biol. 2002, 3: 1-12. 10.1186/gb-2002-3-7-research0034.
Article
Google Scholar
Knowles TG, Edwards JE, Bazeley KJ, Brown SN, Butterworth A, Warriss PD: Changes in the blood biochemical and haematological profile of neonatal calves with age. Vet Rec. 2000, 147: 593-598.
Article
CAS
PubMed
Google Scholar
Reed SN, McGlone JJ: Immune status of PIC Camborough-15 sows, 25% Meishan sows, and their offspring kept indoors and outdoors. J Anim Sci. 2000, 78: 2561-2567.
CAS
PubMed
Google Scholar
Wilson LL, Terosky TL, Stull CL, Stricklin WR: Effects of individual housing design and size on behavior and stress indicators of special-fed Holstein veal calves. J Anim Sci. 1999, 77: 1341-1347.
CAS
PubMed
Google Scholar
Koury MJ, Ponka P: New insights into erythropoeisis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr. 2004, 24: 105-131. 10.1146/annurev.nutr.24.012003.132306.
Article
CAS
PubMed
Google Scholar
Heidarpour Bami M, Mohri M, Seifi HA, Alavi Tabatabaee AA: Effects of parental supply of iron and copper on hematology, weight gain, and health in neonatal dairy calves. Vet Res Commun. 2008, 32: 553-561. 10.1007/s11259-008-9058-6.
Article
CAS
PubMed
Google Scholar
Lynch S: Influence of infection/inflammation, thalassemia and nutrition status on iron absorption. Int J Vitam Nutr Res. 2007, 77: 217-223. 10.1024/0300-9831.77.3.217.
Article
CAS
PubMed
Google Scholar
Berger A: Th1 and Th2 responses: what are they?. Br Med J. 2000, 321: 424-10.1136/bmj.321.7258.424.
Article
CAS
Google Scholar
Rhodes SG, Graham SP: Is 'timing' important for cytokine polarization?. Trends Immunol. 2002, 23: 246-249. 10.1016/S1471-4906(02)02200-7.
Article
CAS
PubMed
Google Scholar
Baker DG, Bruss ML, Gershwin LJ: Abomasal interstitial fluid-to-blood concentration gradient of pepsinogen in calves with type-1 and type-2 ostertagiosis. Am J Vet Res. 1993, 54: 1294-1298.
CAS
PubMed
Google Scholar
Nogareda C, Mezo M, Uriarte J, Lloveras J, Cordero Del Campillo M: Dynamics of infestation of cattle and pasture by gastrointestinal nematodes in atlantic temperate environment. J Vet Med. 2006, B53: 439-444. 10.1111/j.1439-0450.2006.00979.x.
Article
Google Scholar
Bischoff SC, Krämer S: Human mast cells, bacteria, and intestinal immunity. Immunol Rev. 2007, 217: 329-337. 10.1111/j.1600-065X.2007.00523.x.
Article
CAS
PubMed
Google Scholar
Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, Kay AB, Rothenberg ME: Eosinophils: biological properties and role in health and disease. Clin Exp Allergy. 2008, 38: 709-750. 10.1111/j.1365-2222.2008.02958.x.
Article
CAS
PubMed
Google Scholar
Miller HRP: The protective mucosal response against gastrointestinal nematodes in ruminants and laboratory animals. Vet Immunol Immunopathol. 1984, 6: 167-259. 10.1016/0165-2427(84)90051-5.
Article
CAS
PubMed
Google Scholar
Huntley JF, Newlands GF, Jackson F, Miller HRP: The influence of challenge dose, duration of immunity, or steroid treatment on mucosal mast cells and on the distribution of sheep mast cell proteinase in Haemonchus-infected sheep. Parasite Immunol. 1992, 14: 429-440. 10.1111/j.1365-3024.1992.tb00017.x.
Article
CAS
PubMed
Google Scholar
Kanobana K, Ploeger HW, Vervelde L: Immune expulsion of the trichostrongylid Cooperia oncophora is associated with increased eosinophilia and mucosal IgA. Int J Parasitol. 2002, 32: 1389-1398. 10.1016/S0020-7519(02)00132-7.
Article
CAS
PubMed
Google Scholar
Colditz IG: Six costs of immunity to gastrointestinal nematode infections. Parasite Immunol. 2008, 30: 63-70.
CAS
PubMed
Google Scholar
Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KG, Dörner T, Hiepe F: Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol. 2006, 6: 741-750. 10.1038/nri1886.
Article
CAS
PubMed
Google Scholar
Farhadi A, Fields JZ, Keshavarzian A: Mucosal mast cells are pivotal elements in inflammatory bowel disease that connect the dots: stress, intestial hyperpermeability and inflammation. World J Gastroenterol. 2007, 13: 3027-3030.
PubMed Central
PubMed
Google Scholar
Moser R, Fehr J, Bruijnzeel PL: IL-4 controls the selective endothelium-driven transmigration of eosinophils from allergic individuals. J Immunol. 1992, 149: 1432-1438.
CAS
PubMed
Google Scholar
Horie S, Okubo Y, Hossain M, Sato E, Nomura H, Koyama S, Suzuki J, Isobe M, Sekiguchi M: Interleukin-13 but not interleukin-4 prolongs eosinophil survival and induces eosinophil chemotaxis. Intern Med. 1997, 36: 179-185. 10.2169/internalmedicine.36.179.
Article
CAS
PubMed
Google Scholar
Knight PA, Brown JK, Pemberton AD: Innate immune response mechanisms in the intestinal epithelium: potential roles for mast cells and goblet cells in the expulsion of adult Trichinella spiralis. Parasitol. 2008, 135: 1-16.
Article
Google Scholar
Svetic A, Madden KB, Zhou XD, Lu P, Katona IM, Finkelman FD, Urban JF, Gause WC: A primary intestinal helminthic infection rapidly induces a gut-associated elevation of Th2-associated cytokines and IL-3. J Immunol. 1993, 150: 3434-3441.
CAS
PubMed
Google Scholar
Gasbarre LC, Leighton EA, Sonstegard T: Role of the bovine immune system and genome resistance to gastrointestinal nematodes. Vet Parasitol. 2001, 98: 51-64. 10.1016/S0304-4017(01)00423-X.
Article
CAS
PubMed
Google Scholar
Rogers PAM: Copper, iodine and selenium status in Irish cattle. Beef Production Series. 2001, 15: 1-36. Teagasc. [ISBN 841702129]
Google Scholar
McClure SJ: How minerals may influence the development and expression of immunity to endoparasites in livestock. Parasite Immunol. 2008, 30: 89-100.
CAS
PubMed
Google Scholar
Jones DG, Suttle NF: Some effects of copper deficiency on leucocyte function in sheep and cattle. Res Vet Sci. 1981, 31: 151-156.
CAS
PubMed
Google Scholar
Xin Z, Waterman DF, Hemken RW, Harmon RJ: Effects of copper status on neutrophil function, superoxide dismutase, and copper distribution in steers. J Dairy Sci. 1991, 74: 3078-3085. 10.3168/jds.S0022-0302(91)78493-2.
Article
CAS
PubMed
Google Scholar
Gengelbach GP, Ward JD, Spears JW, Brown TT: Effects of copper deficiency and copper deficiency coupled with high dietary iron or molybdenum on phagocytic cell function and response of calves to a respiratory disease challenge. J Anim Sci. 1997, 75: 1112-1118.
CAS
PubMed
Google Scholar
Cerone SI, Sansinanea AS, Streitenberger SA, Garcia MC, Auza NJ: The effect of copper deficiency on the peripheral blood cells of cattle. Vet Res Commun. 1998, 22: 47-57. 10.1023/A:1005935227976.
Article
CAS
PubMed
Google Scholar
Underwood EJ, Suttle NF: Copper. The mineral nutrition of livestock. 1999, Wallingford, Oxon, UK: CABI Publishing, CAB International, Chapter 11: 293-342. 3
Chapter
Google Scholar
Torre PM, Harmon RJ, Hemken RW, Clark TW, Trammell DS, Smith BA: Mild dietary copper insufficiency depresses blood neutrophil function in dairy cattle. J Nutr Immunol. 1995, 3: 3-20.
CAS
Google Scholar
Roberts CG, Ladenson PW: Hypothyroidism. Lancet. 2004, 363: 793-803. 10.1016/S0140-6736(04)15696-1.
Article
CAS
PubMed
Google Scholar
Klecha AJ, Genaro AN, Gorelik G, Barreiro Arcos ML, Silberman DM, Schuman M, Garcia SI, Pirola C, Cremaschi GA: Integrative study of hypothalamus-pituitary-thyroid-immune system interaction: thyroid hormone-mediated modulation of lymphocyte activity through the protein kinase S signaling pathway. J Endocrinol. 2006, 189: 45-55. 10.1677/joe.1.06137.
Article
CAS
PubMed
Google Scholar
Merck : In the Merck Veterinary Manual. Merck & Co., Inc., Whitehouse station, NJ, 50 2008.
Google Scholar