Tiseo K, Huber L, Gilbert M, Robinson TP, Van Boeckel TP. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics. 2020;9(12):918.
Article
Google Scholar
Vandael F, Filippitzi ME, Dewulf J, Daeseleire E, Eeckhout M, Devreese M, et al. Oral group medication in pig production: characterising medicated feed and drinking water systems. Vet Record. 2019;185(13):405.
Article
Google Scholar
Lekagul A, Tangcharoensathien V, Yeung S. The use of antimicrobials in global pig production: a systematic review of methods for quantification. Prev Vet Med. 2018;160:85–98.
Article
Google Scholar
Magouras I, Carmo LP, Stärk KD, Schüpbach-Regula G. Antimicrobial usage and -resistance in livestock: where should we focus? Front Vet Sci. 2017;4:148.
Article
Google Scholar
European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption. Sales of veterinary antimicrobial agents in 31 European countries in 2019 and 2020’. EMA/58183/2021. Luxembourg: Publications Office of the European Union; 2021.
Google Scholar
Mayós I, Bosch J, Fadurdo E, Homedes J. Homogeneity and stability in drinking water of oral nonsteroidal anti-inflammatory drugs labelled for swine in Europe. J Swine Health Prod. 2012;20(6):270–5.
Google Scholar
Watkins S, Waldroup P, Peters J, Desai A. Stability of bacitracin methylene disalicylate and chlortetracycline in combination in a pelleted pig feed. Anim Feed Sci Technol. 1999;81(1–2):35–42.
Article
CAS
Google Scholar
Papich MG. Pharmacokinetic–pharmacodynamic (PK–PD) modeling and the rational selection of dosage regimes for the prudent use of antimicrobial drugs. Vet Microbiol. 2014;171(3–4):480–6.
Article
CAS
Google Scholar
Godoy C, Castells G, Marti G, Capece B, Pérez F, Colom H, et al. Influence of a pig respiratory disease on the pharmacokinetic behaviour of amoxicillin after oral ad libitum administration in medicated feed. J Vet Pharmacol Ther. 2011;34(3):265–76.
Article
CAS
Google Scholar
Dai C, Zhao T, Yang X, Xiao X, Velkov T, Tang S. Pharmacokinetics and relative bioavailability of an oral amoxicillin-apramycin combination in pigs. PLoS One. 2017;12(4):e0176149.
Article
Google Scholar
Agersø H, Friis C, Haugegaard J. Water medication of a swine herd with amoxycillin. J Vet Pharmacol Ther. 1998;21(3):199–202.
Article
Google Scholar
Jensen GM, Lykkesfeldt J, Frydendahl K, Møller K, Svendsen O. Pharmacokinetics of amoxicillin administered in drinking water to recently weaned 3-to 4-week-old pigs with diarrhea experimentally induced by Escherichia coli O149: F4. Am J Vet Res. 2006;67(4):648–53.
Article
CAS
Google Scholar
Prats C, El Korchi G, Giralt M, Cristofol C, Pena J, Zorrilla I, et al. PK and PK/PD of doxycycline in drinking water after therapeutic use in pigs. J Vet Pharmacol Ther. 2005;28(6):525–30.
Article
CAS
Google Scholar
Mason S, Baynes R, Almond G, Riviere J, Scheidt A. Pharmacology of tetracycline water medication in swine. J Anim Sci. 2009;87(10):3179–86.
Article
CAS
Google Scholar
Pijpers A, Schoevers E, Van Gogh H, van Leengoed L, Visser I, van Miert A, et al. The influence of disease on feed and water consumption and on pharmacokinetics of orally administered oxytetracycline in pigs. J Anim Sci. 1991;69(7):2947–54.
Article
CAS
Google Scholar
Vonnahme KA, Mueller A, Nelson DA, Vasquez-Hidalgo MA, Amodie D, Short TH, et al. Water intake of pigs consuming tiamulin during the nursery phase. Transl Anim Sci. 2021;5(1):1–5.
Article
CAS
Google Scholar
Liang Y, Hu D, Yan Y, Chen D, Xie S. Preparation and evaluation of valnemulin hydrochloride taste-masking granules. Curr Drug Deliv. 2022;19(3):337–46.
Article
CAS
Google Scholar
Wu Y, Fassihi R. Stability of metronidazole, tetracycline HCl and famotidine alone and in combination. Int J Pharm. 2005;290(1–2):1–13.
CAS
Google Scholar
Mason SE, Suyemoto M, Baynes R, Almond G. Stability and bioactivity of tetracycline hydrochloride water medication in a swine production unit. J Swine Health Prod. 2011;19(2):107–11.
Google Scholar
Anonymous. 2022. Antibiotic Solubility Table. https://toku-e.com/solubility-data-resource. Accessed 13 December 2022.
Jerzsele A, Nagy G. The stability of amoxicillin trihydrate and potassium clavulanate combination in aqueous solutions. Acta Vet Hung. 2009;57(4):485–93.
Article
CAS
Google Scholar
European Medicines Agency. Guideline on Quality Aspects of Pharmaceutical Veterinary Medicines for Administration via Drinking Water. Basel: MDPI; 2005. p. 1–10 EMEA/CVMP/540/03 Rev 1.
Google Scholar
Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5(5):442–53.
Article
Google Scholar
Vandael F, Cardoso de Carvalho Ferreira H, Devreese M, Dewulf J, Daeseleire E, Eeckhout M, et al. Stability, homogeneity and carry-over of amoxicillin, doxycycline, florfenicol and flubendazole in medicated feed and drinking water on 24 pig farms. Antibiotics. 2020;9(9):563.
Article
CAS
Google Scholar
Filippitzi ME, Sarrazin S, Imberechts H, Smet A, Dewulf J. Risk of cross-contamination due to the use of antimicrobial medicated feed throughout the trail of feed from the feed mill to the farm. Food Addit Contam. 2016;33(4):644–55.
CAS
Google Scholar
Lehtola MJ, Miettinen IT, Lampola T, Hirvonen A, Vartiainen T, Martikainen PJ. Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems. Water Res. 2005;39(10):1962–71.
Article
CAS
Google Scholar
Rogers J, Dowsett A, Dennis P, Lee J, Keevil C. Influence of temperature and plumbing material selection on biofilm formation and growth of legionella pneumophila in a model potable water system containing complex microbial flora. Appl Environ Microbiol. 1994;60(5):1585–92.
Article
CAS
Google Scholar
Little S, Woodward A, Browning G, Billman-Jacobe H. Effect of drinking water distribution system design on antimicrobial delivery to pigs. Animals. 2021;11(8):2362.
Article
Google Scholar
Little S, Woodward A, Browning G, Billman-Jacobe H. Water distribution systems in pig farm buildings: critical elements of design and management. Animals. 2021;11(11):3268.
Article
Google Scholar
McIntyre AR, Lipman NS. Amoxicillin–clavulanic acid and trimethoprim–sulfamethoxazole in rodent feed and water: effects of compounding on antibiotic stability. J Am Assoc Lab Anim Sci. 2007;46(5):26–32.
CAS
Google Scholar
Zhang N, Ba J, Wang S, Xu Z, Wu F, Li Z, et al. Pharmacokinetics and bioavailability of solid dispersion formulation of tilmicosin in pigs. J Vet Pharmacol Ther. 2021;44(3):359–66.
Article
Google Scholar
Garnerin P, Pellet-Meier B, Chopard P, Perneger T, Bonnabry P. Measuring human-error probabilities in drug preparation: a pilot simulation study. Eur J Clin Pharmacol. 2007;63(8):769–76.
Article
CAS
Google Scholar
Etchells E, Juurlink D, Levinson W. Medication errors: the human factor. Can Med Assoc J. 2008;178(1):63–4.
Article
Google Scholar
del Castillo JRE. Votre moulée reçoit bien ses antibiotiques, vos porcs aussi? Colloque sur la production porcine Centre de Référence en Agriculture et Agroalimentaire du Québec. Amsterdam: Elsevier; 2005. p. 1–15.
Google Scholar
Hémonic A, Hugues L, Corrégé I. Medication via drinking water by a dosing pump: motivations, restraints and use practices. J Rech Porc Fr. 2016;48:357–8.
Google Scholar
Verstraete F. Risk management of undesirable substances in feed following updated risk assessments. Toxicol Appl Pharmacol. 2013;270(3):230–47.
Article
CAS
Google Scholar
Kumar A, Patyal A, Panda A. Sub-therapeutic use of antibiotics in animal feed and their potential impact on environmental and human health: a comprehensive review. J Animal Feed Sci Technol. 2018;6(15):25.
Google Scholar
Filippitzi ME, Chantziaras I, Devreese M, Dewulf J. Probabilistic risk model to assess the potential for resistance selection following the use of anti-microbial medicated feed in pigs. Food Addit Contam. 2018;35(7):1266–77.
Article
CAS
Google Scholar
Little S, Crabb H, Woodward A, Browning G, Billman-Jacobe H. Review: water medication of growing pigs: sources of between-animal variability in systemic exposure to antimicrobials. Animal. 2019;13(12):3031–40.
Article
CAS
Google Scholar
Soraci AL, Amanto F, Tapia MO, de la Torre E, Toutain P-L. Exposure variability of fosfomycin administered to pigs in food or water: impact of social rank. Res Vet Sci. 2014;96(1):153–9.
Article
CAS
Google Scholar
Andersen H-L, Dybkjær L, Herskin M. Growing pigs’ drinking behaviour: number of visits, duration, water intake and diurnal variation. Animal. 2014;8(11):1881–8.
Article
Google Scholar
Chassan M, Hémonic A, Concordet D. What matters in piglets’ exposure to antibiotics administered through drinking water? Antibiotics. 2021;10(9):1067.
Article
CAS
Google Scholar
Brumm M. Patterns of drinking water use in pork production facilities. Nebraska Swine Report. 2006;221:10–3.
Google Scholar
Meiszberg AM, Johnson AK, Sadler LJ, Carroll J, Dailey JW, Krebs N. Drinking behavior in nursery pigs: determining the accuracy between an automatic water meter versus human observers. J Anim Sci. 2009;87(12):4173–80.
Article
CAS
Google Scholar
Brumm M. Water recommendations and systems for swine. Clive, IA: US Pork Center of Excellence, Pork Information Gateway; 2010.
Google Scholar
Ahmed S, Mun H-S, Yoe H, Yang C-J. Monitoring of behavior using a video-recording system for recognition of Salmonella infection in experimentally infected growing pigs. Animal. 2015;9(1):115–21.
Article
CAS
Google Scholar
Ware JH. The limitations of risk factors as prognostic tools. N Engl J Med. 2006;355(25):2615–7.
Article
CAS
Google Scholar
EMA (European Medicines Agency), EFSA (European Food Safety Authority). EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). [EMA/CVMP/570771/2015]. EFSA Journal. 2017;15(1):4666.
Google Scholar
Ferran AA, Roques BB. Can oral group medication be improved to reduce antimicrobial use? Vet Rec. 2019;185(13):402.
Article
Google Scholar
Crea F, Cucinotta D, De Stefano C, Milea D, Sammartano S, Vianelli G. Modeling solubility, acid–base properties and activity coefficients of amoxicillin, ampicillin and (+) 6-aminopenicillanic acid, in NaCl (aq) at different ionic strengths and temperatures. Eur J Pharm Sci. 2012;47(4):661–77.
Article
CAS
Google Scholar
Scandurra S. Veterinary drugs in drinking water used for pharmaceutical treatments in breeding farms. PhD thesis. Bologna: University of Bologna; 2013.
Google Scholar
Croubels S, De Baere S, De Backer P. Practical approach for the stability testing of veterinary drugs in solutions and in biological matrices during storage. Anal Chim Acta. 2003;483(1–2):419–27.
Article
CAS
Google Scholar
Houben MA, van Nes A, Tobias TJ. Water palatability, a matter of taste. Porc Health Manag. 2015;1(1):1–7.
Article
Google Scholar
Hoeck J, Büscher W. Temperature-dependent consumption of drinking water in piglet rearing. Appl Anim Behav Sci. 2015;170:20–5.
Article
Google Scholar
Little S, Woodward A, Browning G, Billman-Jacobe H. In-water antibiotic dosing practices on pig farms. Antibiotics. 2021;10(2):169.
Article
CAS
Google Scholar
Little SB, Browning GF, Woodward AP, Billman-Jacobe H. Water consumption and wastage behaviour in pigs: implications for antimicrobial administration and stewardship. Animal. 2022;16(8):100586.
Article
CAS
Google Scholar
Arrioja A. Handbook on import risk analysis for animals and animal products: volume 2. Quantitative risk assessment. Can Vet J. 2008;49(10):1036.
Google Scholar