Maggs DJ. Cornea and Sclera. In: Maggs DJ, Miller PE, Ofri R, Slatter DH, editors. Slatter’s fundamentals of veterinary ophthalmology. 5th ed. St. Louis: Elsevier; 2013. p. 184–219.
Google Scholar
Ledbetter EC, Gilger BC. Diseases and Surgery of the Canine Cornea and Sclera. In: Gelatt KN, Gilger BC, Kern TJ, editors. Vet Ophthalmol. 5th ed. Ames, Iowa: Wiley-Blackwell; 2013. p. 976–1049.
Google Scholar
Greene CE. Infectious diseases of the dog and cat. 4th ed. St. Louis, Mo.: Elsevier/Saunders; 2012. xxii, p. 1354.
Ollivier FJ. Bacterial corneal diseases in dogs and cats. Clin Tech Small Anim Pract. 2003;18(3):193–8.
Article
PubMed
Google Scholar
Ollivier FJ, Brooks DE, Kallberg ME, et al. Evaluation of various compounds to inhibit activity of matrix metalloproteinases in the tear film of horses with ulcerative keratitis. Am J Vet Res. 2003;64(9):1081–7.
Article
CAS
PubMed
Google Scholar
Brooks DE, Ollivier FJ. Matrix metalloproteinase inhibition in corneal ulceration. Vet Clin North Am Small Anim Pract. 2004;34(3):611–22.
Article
PubMed
Google Scholar
WHO WHO. Antimicrobial resistance: global report on surveillance. 2014.
Google Scholar
Alexandrakis G, Alfonso EC, Miller D. Shifting trends in bacterial keratitis in south Florida and emerging resistance to fluoroquinolones. Ophthalmology. 2000;107(8):1497–502.
Article
CAS
PubMed
Google Scholar
Chalita MR, Hofling-Lima AL, Paranhos A Jr, et al. Shifting trends in in vitro antibiotic susceptibilities for common ocular isolates during a period of 15 years. Am J Ophthalmol. 2004;137(1):43–51.
Article
PubMed
Google Scholar
Sharma V, Sharma S, Garg P, et al. Clinical resistance of Staphylococcus keratitis to ciprofloxacin monotherapy. Indian J Ophthalmol. 2004;52(4):287–92.
Article
PubMed
Google Scholar
Kunimoto DY, Sharma S, Garg P, et al. In vitro susceptibility of bacterial keratitis pathogens to ciprofloxacin Emerging resistance. Ophthalmology. 1999;106(1):80–5.
Article
CAS
PubMed
Google Scholar
Varges R, Penna B, Martins G, et al. Antimicrobial susceptibility of Staphylococci isolated from naturally occurring canine external ocular diseases. Vet Ophthalmol. 2009;12(4):216–20.
Article
CAS
PubMed
Google Scholar
Mamalis N. The increasing problem of antibiotic resistance. J Cataract Refract Surg. 2007;33(11):1831–2.
Article
PubMed
Google Scholar
Suter A, Voelter K, Hartnack S, et al. Septic keratitis in dogs, cats, and horses in Switzerland: associated bacteria and antibiotic susceptibility. Vet Ophthalmol. 2018;21(1):66–75.
Article
CAS
PubMed
Google Scholar
Hakanson NMR. Further comments on conjunctival pedicle grafting in the treatment of corneal ulcers in the dog and cat. J Am Anim Hosp Assoc. 1988;24:602–5.
Google Scholar
Hakanson NMR. Conjunctival pedicle grafting in the treatment of corneal ulcers in the dog and cat. J Am Anim Hosp Assoc. 1987;23:641–8.
Google Scholar
Brooks DE, Mattews A, Clode A. Diseases of the cornea. In: Equine ophthalmology. 3rd ed. Ames: Wiley Blackwell; 2017. p. 252–368.
Google Scholar
Tschopp M, Stary J, Frueh BE, et al. Impact of corneal cross-linking on drug penetration in an ex vivo porcine eye model. Cornea. 2012;31(3):222–6.
Article
PubMed
Google Scholar
Wollensak G, Sporl E, Seiler T. Treatment of keratoconus by collagen cross linking. Ophthalmologe. 2003;100(1):44–9.
Article
CAS
PubMed
Google Scholar
Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–7.
Article
CAS
PubMed
Google Scholar
Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29(1):35–40.
Article
CAS
PubMed
Google Scholar
Corbin F 3rd. Pathogen inactivation of blood components: current status and introduction of an approach using riboflavin as a photosensitizer. Int J Hematol. 2002;76(Suppl 2):253–7.
Article
PubMed
Google Scholar
Martins SA, Combs JC, Noguera G, et al. Antimicrobial efficacy of riboflavin/UVA combination (365 nm) in vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis. Invest Ophthalmol Vis Sci. 2008;49(8):3402–8.
Article
PubMed
Google Scholar
AuBuchon JP, Herschel L, Roger J, et al. Efficacy of apheresis platelets treated with riboflavin and ultraviolet light for pathogen reduction. Transfusion. 2005;45(8):1335–41.
Article
CAS
PubMed
Google Scholar
Goodrich RP. The use of riboflavin for the inactivation of pathogens in blood products. Vox Sang. 2000;78(Suppl 2):211–5.
CAS
PubMed
Google Scholar
Kumar V, Lockerbie O, Keil SD, et al. Riboflavin and UV-light based pathogen reduction: extent and consequence of DNA damage at the molecular level. Photochem Photobiol. 2004;80:15–21.
Article
CAS
PubMed
Google Scholar
Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg. 2003;29(9):1780–5.
Article
PubMed
Google Scholar
Dhaliwal JS, Kaufman SC. Corneal collagen cross-linking: a confocal, electron, and light microscopy study of eye bank corneas. Cornea. 2009;28(1):62–7.
Article
PubMed
Google Scholar
Mazzotta C, Balestrazzi A, Traversi C, et al. Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg Retinal Tomograph II in vivo confocal microscopy in humans. Cornea. 2007;26(4):390–7.
Article
PubMed
Google Scholar
McAteer MJ, Tay-Goodrich BH, Doane S, et al. Photoinactivation of virus in packed red blood cell units using riboflavin and visible light. Transfusion. 2000;40(10):99s–99s.
Google Scholar
Uc MH, Scott JF. Effects of ultraviolet light on the biological functions of transfer RNA. Biochem Biophys Res Commun. 1966;22(5):459–65.
Article
CAS
PubMed
Google Scholar
Chan TC, Agarwal T, Vajpayee RB, et al. Cross-linking for microbial keratitis. Curr Opin Ophthalmol. 2016;27(4):348–52.
Article
PubMed
Google Scholar
Wollensak G, Spoerl E, Wilsch M, et al. Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment. Cornea. 2004;23(1):43–9.
Article
PubMed
Google Scholar
Wollensak G, Spoerl E, Reber F, et al. Keratocyte cytotoxicity of riboflavin/UVA-treatment in vitro. Eye (Lond). 2004;18(7):718–22.
Article
CAS
Google Scholar
Esquenazi S, He J, Li N, et al. Immunofluorescence of rabbit corneas after collagen cross-linking treatment with riboflavin and ultraviolet A. Cornea. 2010;29(4):412–7.
Article
PubMed
PubMed Central
Google Scholar
St Denis TG, Dai T, Izikson L, et al. All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. Virulence. 2011;2(6):509–20.
Article
PubMed
PubMed Central
Google Scholar
Tavares A, Carvalho CM, Faustino MA, et al. Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar Drugs. 2010;8(1):91–105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kashef N, Hamblin MR. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? Drug Resist Updat. 2017;31:31–42.
Article
PubMed
PubMed Central
Google Scholar
Knyazer B, Krakauer Y, Baumfeld Y, et al. Accelerated corneal cross-linking with photoactivated chromophore for moderate therapy-resistant infectious keratitis. Cornea. 2018;37(4):528–31.
Article
PubMed
Google Scholar
Iseli HP, Thiel MA, Hafezi F, et al. Ultraviolet A/riboflavin corneal cross-linking for infectious keratitis associated with corneal melts. Cornea. 2008;27(5):590–4.
Article
PubMed
Google Scholar
Makdoumi K, Mortensen J, Sorkhabi O, et al. UVA-riboflavin photochemical therapy of bacterial keratitis: a pilot study. Graefes Arch Clin Exp Ophthalmol. 2012;250(1):95–102.
Article
CAS
PubMed
Google Scholar
Makdoumi K, Mortensen J, Crafoord S. Infectious keratitis treated with corneal crosslinking. Cornea. 2010;29(12):1353–8.
Article
PubMed
Google Scholar
Famose F. Evaluation of accelerated collagen cross-linking for the treatment of melting keratitis in ten cats. Vet Ophthalmol. 2015;18(2):95-104.
Famose F. Evaluation of accelerated collagen cross-linking for the treatment of melting keratitis in eight dogs. Vet Ophthalmol. 2014;17(5):358–67.
Article
PubMed
Google Scholar
Pot SA, Gallhofer NS, Matheis FL, et al. Corneal collagen cross-linking as treatment for infectious and noninfectious corneal melting in cats and dogs: results of a prospective, nonrandomized, controlled trial. Vet Ophthalmol. 2014;17(4):250–60.
Article
CAS
PubMed
Google Scholar
Said DG, Elalfy MS, Gatzioufas Z, et al. Collagen cross-linking with photoactivated riboflavin (PACK-CXL) for the treatment of advanced infectious keratitis with corneal melting. Ophthalmology. 2014;121(7):1377–82.
Article
PubMed
Google Scholar
Spiess BM, Pot SA, Florin M, et al. Corneal collagen cross-linking (CXL) for the treatment of melting keratitis in cats and dogs: a pilot study. Vet Ophthalmol. 2014;17(1):1–11.
Article
CAS
PubMed
Google Scholar
Price MO, Tenkman LR, Schrier A, et al. Photoactivated riboflavin treatment of infectious keratitis using collagen cross-linking technology. J Refract Surg. 2012;28(10):706–13.
Article
PubMed
Google Scholar
Pot SA, editor. PACK-CXL: clinical results II. Zurich: 1st International CXL Experts’ Meeting; 2016.
Hafezi F, Randleman JB. PACK-CXL: defining CXL for infectious keratitis. J Refract Surg. 2014;30(7):438–9.
Article
PubMed
Google Scholar
Hellander-Edman A, Makdoumi K, Mortensen J, et al. Corneal cross-linking in 9 horses with ulcerative keratitis. BMC Vet Res. 2013;9:128.
Article
PubMed
PubMed Central
Google Scholar
Richoz O, Kling S, Hoogewoud F, et al. Antibacterial efficacy of accelerated photoactivated chromophore for keratitis-corneal collagen cross-linking (PACK-CXL). J Refract Surg. 2014;30(12):850–4.
Article
PubMed
Google Scholar
Schrier A, Greebel G, Attia H, et al. In vitro antimicrobial efficacy of riboflavin and ultraviolet light on Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa. J Refract Surg. 2009;25(9):S799-802.
Article
PubMed
Google Scholar
Makdoumi K, Backman A, Mortensen J, et al. Evaluation of antibacterial efficacy of photo-activated riboflavin using ultraviolet light (UVA). Graefes Arch Clin Exp Ophthalmol. 2010;248(2):207–12.
Article
CAS
PubMed
Google Scholar
Makdoumi K, Backman A. Photodynamic UVA-riboflavin bacterial elimination in antibiotic-resistant bacteria. Clin Exp Ophthalmol. 2016;44(7):582–6.
Article
PubMed
Google Scholar
Berra M, Galperin G, Boscaro G, et al. Treatment of Acanthamoeba keratitis by corneal cross-linking. Cornea. 2013;32(2):174–8.
Article
PubMed
Google Scholar
Galperin G, Berra M, Tau J, et al. Treatment of fungal keratitis from Fusarium infection by corneal cross-linking. Cornea. 2012;31(2):176–80.
Article
PubMed
Google Scholar
Kralik P, Babak V, Dziedzinska R. Repeated cycles of chemical and physical disinfection and their influence on Mycobacterium avium subsp. paratuberculosis viability measured by propidium monoazide F57 quantitative real time PCR. Vet J. 2014;201(3):359–64.
Article
CAS
PubMed
Google Scholar
Ermolaeva SA, Varfolomeev AF, Chernukha MY, et al. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol. 2011;60(Pt 1):75–83.
Article
CAS
PubMed
Google Scholar
Bunsen RW, Roscoe HE. Photochemical researches-Part V. On the measurement of the chemical action of direct and diffuse sunlight. Proc Roy Soc Lond. 1862;12:306–12.
Google Scholar
Wernli J, Schumacher S, Spoerl E, et al. The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. Invest Ophthalmol Vis Sci. 2013;54(2):1176–80.
Article
PubMed
Google Scholar
Kymionis GD, Tsoulnaras KI, Grentzelos MA, et al. Evaluation of corneal stromal demarcation line depth following standard and a modified-accelerated collagen cross-linking protocol. Am J Ophthalmol. 2014;158(4):671-675 e671.
Article
PubMed
Google Scholar
Backman A, Makdoumi K, Mortensen J, et al. The efficiency of cross-linking methods in eradication of bacteria is influenced by the riboflavin concentration and the irradiation time of ultraviolet light. Acta Ophthalmol. 2014;92(7):656–61.
Article
PubMed
CAS
Google Scholar
Aldahlawi NH, Hayes S, O’Brart DP, et al. Enzymatic resistance of corneas crosslinked using riboflavin in conjunction with low energy, high energy, and pulsed UVA irradiation modes. Invest Ophthalmol Vis Sci. 2016;57(4):1547–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kling S, editor. Quantifying the antimicrobial efficacy of PACK-CXL for different bacterial strains as a function of UV fluence and irradiated volume. Zurich; International CXL Experts’ Meeting; 2017.
Richoz O, Hammer A, Tabibian D, et al. The biomechanical effect of Corneal Collagen Cross-Linking (CXL) with riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol. 2013;2(7):6.
Article
PubMed
PubMed Central
Google Scholar
Hammer A, Richoz O, Mosquera SA, et al. Corneal biomechanical properties at different Corneal Cross-Linking (CXL) irradiancescorneal biomechanics at higher UV-A irradiances. Invest Ophthalmol Vis Sci. 2014;55(5):2881–4.
Article
PubMed
Google Scholar
Bao F, Zheng Y, Liu C, et al. Changes in corneal biomechanical properties with different corneal cross-linking irradiances. J Refract Surg. 2018;34(1):51–8.
Article
PubMed
Google Scholar
Santhiago MR, Randleman JB. The biology of corneal cross-linking derived from ultraviolet light and riboflavin. Exp Eye Res. 2020;202:108355.
Article
PubMed
CAS
Google Scholar
Lin W, Lu C, Du F, et al. Reaction mechanisms of riboflavin triplet state with nucleic acid bases. Photochem Photobiol Sci. 2006;5(4):422–5.
Article
CAS
PubMed
Google Scholar
Korczak BM, Bisgaard M, Christensen H, et al. Frederiksenia canicola gen. nov., sp. nov. isolated from dogs and human dog-bite wounds. Antonie Van Leeuwenhoek. 2014;105(4):731–41.
Article
CAS
PubMed
Google Scholar
Pinheiro J BD, DebRoy S, Sarkar D and R Core Team. _nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1–128. 2016.
Haile SR, Held L, Meyer S, Rueeger S, Rufibach K, Schwab S. biostatUZH: Misc Tools of the Department of Biostatistics, EBPI, University of Zurich. R package version 1.8.0/r90. 2020.
Gail M, Simon R. Testing for qualitative interactions between treatment effects and patient subsets. Biometrics. 1985;41(2):361–72.
Article
CAS
PubMed
Google Scholar
Ray WA, O’Day DM. Statistical analysis of multi-eye data in ophthalmic research. Invest Ophthalmol Vis Sci. 1985;26(8):1186–8.
CAS
PubMed
Google Scholar
Bunce C, Patel KV, Xing W, et al. Ophthalmic statistics note 1: unit of analysis. Br J Ophthalmol. 2014;98(3):408.
Article
PubMed
Google Scholar
Ting DSJ, Henein C, Said DG, et al. Photoactivated chromophore for infectious keratitis - Corneal cross-linking (PACK-CXL): a systematic review and meta-analysis. Ocul Surf. 2019;17(4):624–34.
Article
PubMed
Google Scholar
Abbouda A, Abicca I, Alio JL. Current and future applications of photoactivated chromophore for Keratitis-Corneal Collagen Cross-Linking (PACK-CXL): an overview of the different treatments proposed. Semin Ophthalmol. 2018;33(3):293–9.
Article
CAS
PubMed
Google Scholar
Papaioannou L, Miligkos M, Papathanassiou M. Corneal collagen cross-linking for infectious keratitis: a systematic review and meta-analysis. Cornea. 2016;35(1):62–71.
Article
PubMed
Google Scholar
Knyazer B, Krakauer Y, Tailakh MA, et al. Accelerated corneal cross-linking as an adjunct therapy in the management of presumed bacterial keratitis: a cohort study. J Refract Surg. 2020;36(4):258–64.
Article
PubMed
Google Scholar
Kling S, Hufschmid FS, Torres-Netto EA, et al. High fluence increases the antibacterial efficacy of PACK cross-linking. Cornea. 2020;39(8):1020–6.
Article
PubMed
Google Scholar
Gilardoni F K-B, H, Abdshahzadeh H, Abrishamchi R, Hafezi N, Torres E, Zbinden R, Hafezi F, editor. In vitro efficacy of accelerated high-fluence PACK-CXL with riboflavin for bacterial keratitis. Zurich: International CXL Experts’ Meeting; 2019.
Hayes S, Kamma-Lorger CS, Boote C, et al. The effect of riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour of the ungulate and rabbit corneal stroma. PLoS One. 2013;8(1):e52860.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wollensak G. Fundamental principals of corneal collagen cross-linking. In: Hafezi F RJ, editor. Corneal Collagen Cross-Linking. Thorofare: Slack Inc.; 2013. p. 13–7.
Google Scholar
Lin JT. The role of riboflavin concentration and oxygen in the efficacy and depth of corneal crosslinking. Invest Ophthalmol Vis Sci. 2018;59(11):4449–50.
Article
CAS
PubMed
Google Scholar
Gallhoefer NS, Spiess BM, Guscetti F, et al. Penetration depth of corneal cross-linking with riboflavin and UV-A (CXL) in horses and rabbits. Vet Ophthalmol. 2016;19(4):275–84.
Article
CAS
PubMed
Google Scholar
Pinnock A, Shivshetty N, Roy S, et al. Ex vivo rabbit and human corneas as models for bacterial and fungal keratitis. Graefes Arch Clin Exp Ophthalmol. 2017;255(2):333–42.
Article
PubMed
Google Scholar
Okurowska K, Roy S, Thokala P, et al. Establishing a porcine ex vivo cornea model for studying drug treatments against bacterial keratitis. J Vis Exp. 2020;(159).