Kingsley IE, Harris JE. Animal models of vitiligo: matching the model to the question. Dermatol Sin. 2014;32:240–7.
Article
Google Scholar
Shen C, Gao J, Sheng Y, Dou J, Zhou F, Zheng X, et al. Genetic susceptibility to vitiligo: GWAS approaches for identifying vitiligo susceptibility genes and loci. Front Genet. 2016. https://doi.org/10.3389/fgene.2016.00003.
Puri N, Mojamdar M, Ramaiah A. In vitro growth characteristics of melanocytes obtained from adult normal and vitiligo subjects. J Invest Dermatol. 1987;88:434–8.
Article
CAS
PubMed
Google Scholar
Jimbow K, Chen H, Park JS, Thomas PD. Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Brit J Dermatol. 2001;144:55–65.
Article
CAS
Google Scholar
Kroll TM, Bommiasamy H, Boissy RE, Hernandez C, Nickoloff BJ, Mestril R. Caroline Le Poole I. 4-Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol. 2005;124:798–806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu R, Huang Y, Zhang X, Zhou Y. Potential role of neurogenic inflammatory factors in the pathogenesis of vitiligo. J Cutan Med Surg. 2012;16:230–44.
Article
CAS
PubMed
Google Scholar
Ogg GS, Rod Dunbar P, Romero P, Chen JL, Cerundolo V. High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exper Med. 1998;188:1203–8.
Article
CAS
Google Scholar
Lang KS, Caroli CC, Muhm A, Wernet D, Moris A, Schittek B, et al. HLA-A2 restricted, melanocyte-specific CD8(+) T lymphocytes detected in vitiligo patients are related to disease activity and are predominantly directed against MelanA/MART1. J Invest Dermatol. 2001;116:891–7.
Article
CAS
PubMed
Google Scholar
Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG, Harris JE. Vitiligo working group. New discoveries in the pathogenesis and classification of vitiligo. J Amer Acad Dermatol. 2017;77:1–13.
Article
CAS
Google Scholar
Jin Y, Andersen G, Yorgov D, Ferrara TM, Ben S, Brownson KM, et al. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet. 2016;48:1418–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta I, Narang A, Singh P, Manchanda V, Khanna S, Indian genome variation consortium, et al. VitiVar: A locus specific database of vitiligo associated genes and variations. Gene X. 2019;3:100018.
CAS
PubMed
PubMed Central
Google Scholar
Kundu RV, Mhlaba JM, Rangel SM, Le Poole IC. The convergence theory for vitiligo: a reappraisal. Exper Dermatol. 2019;28:647–55.
Article
Google Scholar
Lei Z, Yu S, Ding Y, Liang J, Halifu Y, Xiang F, et al. Identification of key genes and pathways involved in vitiligo development based on integrated analysis. Medicine. 2020;99:e21297.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tham HL, Linder KE, Olivry T. Autoimmune diseases affecting skin melanocytes in dogs, cats and horses: vitiligo and the uveodermatological syndrome: a comprehensive review. BMC Vet Res. 2019;15:251.
Article
PubMed
PubMed Central
Google Scholar
Naughton GK, Mahaffey M, Bystryn JC. Antibodies to surface antigens of pigmented cells in animals with vitiligo. Proc Soc Exp Biol Med. 1986;181:423–6.
Article
CAS
PubMed
Google Scholar
Meijer WCP. Dermatological diagnosis in horse and cattle judging. Vet Rec. 1965;77:1046–7.
Article
CAS
PubMed
Google Scholar
Meijer WCP. Vitiligo in the horse: the so-called ‘neigeuses’. Neth J Vet Sci. 1961;86:1021–6.
Google Scholar
Meijer WCP. Vitiligo in horses and cattle. Neth J Vet Sci. 1962;87:411–7.
Google Scholar
McLean LM, Jones WE. Depigmentation – copper supplement therapy a case report. J Equine Vet Sci. 1983;3:208–10.
Article
Google Scholar
Montes LF, Wilborn WH, Hyde BM, Vaughan JT, Bennett JS. Vitiligo in a quarter horse filly: Clinicopathologic, ultrastructural and nutritional study. J Equine Vet Sci. 2008;28:171–5.
Article
Google Scholar
Mozos E, Novales M. sierra MA. Focal hypopigmentation in horses resembling Arabian fading syndrome. Equine Vet Educ 1991;3:122–125.
Scott DW, Miller WH. Pigmentary abnormalities. In: Scott DW, Miller WH, editors. Equine Dermatology. 2nd ed. Maryland Heights: Elsevier/ Saunders; 2011. p. 391–2.
Google Scholar
Rosengren Pielberg G, Golovko A, Sundström E, Curik I, Lennartsson J, Seltenhammer MH, et al. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat Genet. 2008;40:1004–9.
Article
CAS
PubMed
Google Scholar
Curik I, Druml T, Seltenhammer M, Sundström E, Pielberg GR, Andersson L, et al. Complex inheritance of melanoma and pigmentation of coat and skin in Grey horses. PLoS Genet. 2013;9:e1003248.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hofmanová B, Vostrý L, Majzlík I, Vostrá-Vydrová H. Characterization of greying, melanoma, and vitiligo quantitative inheritance in old Kladruber horses. Czech J Anim Sci. 2015;60:443–51.
Article
Google Scholar
Sánchez-Guerrero MJ, Solé M, Azor PJ, Sölkner J, Valera M. Genetic and environmental risk factors for vitiligo and melanoma in Pura Raza Español horses. Equine Vet J. 2019;51:606–11.
Article
PubMed
Google Scholar
Seltenhammer MH, Simhofer H, Scherzer S, Zechner P, Curik I, Sölkner J, et al. Equine melanoma in a population of 296 grey Lipizzaner horses. Equine Vet J. 2003;35:153–7.
Article
CAS
PubMed
Google Scholar
Teulings HE, Overkamp M, Ceylan E, Nieuweboer-Krobotova L, Bos JD, Nijsten T, et al. Decreased risk of melanoma and nonmelanoma skin cancer in patients with vitiligo: a survey among 1307 patients and their partners. Brit J Dermatol. 2013;168:162–71.
Article
CAS
Google Scholar
Paradisi A, Tabolli S, Didona B, Sobrino L, Russo N, Abeni D. Markedly reduced incidence of melanoma and nonmelanoma skin cancer in a nonconcurrent cohort of 10,040 patients with vitiligo. J Am Acad Dermatol. 2014;71:1110–6.
Article
PubMed
Google Scholar
Spritz RA. The genetics of generalized vitiligo: autoimmune pathways and an inverse relationship with malignant melanoma. Genome Med. 2010;2:78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Spritz RA, Andersen GH. Genetics of vitiligo. Dermatol Clin. 2017;35:245–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Misfeldt ML, Grimm DR. Sinclaire miniature swine: an animal model of human melanoma. Vet Immunol Immunopathol. 1994;43:167–75.
Article
CAS
PubMed
Google Scholar
Lentz KJ, Burns RP, Loeffler K, Feeney-Burns L, Berkelhammer J, Hook RR. Uveitis caused by cytotoxic immune response to cutaneous malignant melanoma in swine: destruction of uveal melanocytes during tumor regression. Invest Ophthalmol Vis Sci. 1983;24:1063–9.
CAS
PubMed
Google Scholar
Hoek KS. DNA microarray analyses of melanoma gene expression: a decade in the mines. Pigment Cell Res. 2007;20:466–84.
Article
CAS
PubMed
Google Scholar
Wang Y, Wu N, Sun D, Sun H, Tong D, Liu D, et al. NUBPL, a novel metastasis-related gene, promotes colorectal carcinoma cell motility by inducing epithelial-mesenchymal transition. Cancer Sci. 2017;108:1169–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Savoia P, Fava P, Casoni F, Cremona O. Targeting the ERK signaling pathway in melanoma. Int J Mol Sci. 2019;20:1483.
Article
CAS
PubMed Central
Google Scholar
Jang N, Stewart G, Jones G. Polymorphisms within the PHF11 gene at chromosome 13q14 are associated with childhood atopic dermatitis. Genes Immun. 2005;6:262–4.
Article
CAS
PubMed
Google Scholar
Holt RJ, Vandiedonck C, Willis-Owen SA, Knight JC, Cookson WO, Moffatt MF, et al. A functional AT/G polymorphism in the 5′-untranslated region of SETDB2 in the IgE locus on human chromosome 13q14. Genes Immun. 2015;16:488.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torrano J, Al Emran A, Hammerlindl H, Schaider H. Emerging roles of H3K9me3, SETDB1 and SETDB2 in therapy-induced cellular reprogramming. Clin Epigenet. 2019;11:43.
Article
Google Scholar
Kimball AS, Davis FM, denDekker A, Joshi AD, Schaller MA, Bermick J, et al. The histone methyltransferase Setdb2 modulates macrophage phenotype and uric acid production in diabetic wound repair. Immunity. 2019;51:258–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mabuchi H, Fujii H, Calin G, et al. Cloning and characterization of CLLD6, CLLD7, and CLLD8, novel candidate genes for leukemogenesis at chromosome 13q14, a region commonly deleted in B-cell chronic lymphocytic leukemia. Cancer Res. 2001;61:2870–7.
CAS
PubMed
Google Scholar
Zhou X, Münger K. Clld7, a candidate tumor suppressor on chromosome 13q14, regulates pathways of DNA damage/repair and apoptosis. Cancer Res. 2010;70:9434–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bessette DC, Qiu D, Pallen CJ. PRL PTPs: mediators and markers of cancer progression. Cancer Metastasis Rev. 2008;27:231–52.
Article
CAS
PubMed
Google Scholar
Sacchetti C, Bai Y, Stanford SM, Di Benedetto P, Cipriani P, Santelli E, et al. PTP4A1 promotes TGFβ signaling and fibrosis in systemic sclerosis. Nat Commun. 2017;8:1060.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pfeiffer JR, McAvoy BL, Fecteau RE, Deleault KM, Brooks SA. CARHSP1 is required for effective tumor necrosis factor alpha mRNA stabilization and localizes to processing bodies and exosomes. Mol Cell Biol. 2011;31:277–86.
Article
CAS
PubMed
Google Scholar
Takashiba S, Van Dyke TE, Shapira L, Amar S. Lipopolysaccharide-inducible and salicylate-sensitive nuclear factor(s) on human tumor necrosis factor alpha promoter. Infect Immun. 1995;63:1529–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bertolo C, Roa S, Sagardoy A, Mena-Varas M, Robles EF, Martinez-Ferrandis JI, et al. LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas. Brit J Haematol. 2013;162:621–30.
Article
CAS
Google Scholar
Grilz-Seger G, Druml T, Neuditschko M, Dobretsberger M, Horna M, Brem G. High-resolution population structure and runs of homozygosity reveal the genetic architecture of complex traits in the Lipizzan horse. BMC Genomics. 2019;20:174.
Article
PubMed
PubMed Central
Google Scholar
Grilz-Seger G, Dobretsberger M, Brem G, Druml T. Untersuchungen zum Allelstatus einzelner Farbloci und Abzeichen beim Lipizzaner. Züchtungskunde. 2020;92:76–86.
Google Scholar
Grilz-Seger G, Neuditschko M, Ricard A, Velie B, Lindgren G, Mesarič M, et al. Genome-wide homozygosity patterns and evidence for selection in a set of European and near eastern horse breeds. Genes. 2019;10:491.
Article
CAS
PubMed Central
Google Scholar
Schaefer RJ, Schubert M, Bailey E, Bannasch DL, Barrey E, Bar-Gal GK, et al. Developing a 670k genotyping array to tag ~2M SNPs across 24 horse breeds. BMC Genomics. 2017;18:565–83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corbin LJ, Pope J, Sanson J, Antczak DF, Miller D, Sadeghi R, et al. An independent locus upstream of ASIP controls variation in the shade of the bay coat colour in horses. Genes. 2020;11:606.
Article
CAS
PubMed Central
Google Scholar
Rieder S, Taourit S, Mariat D, Langlois B, Guérin G. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mam Genome. 2001;12:450–5.
Article
CAS
Google Scholar
Kavar T, Čeh E, Dovč P. A simplified PCR-based method for detection of gray coat color allele in horse. Mol Cell Probes. 2012;26:256–8.
Article
CAS
PubMed
Google Scholar
SAS Institute. SAS university edition. 2021. Cary (NC): SAS institute, Inc.
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.
Article
CAS
PubMed
PubMed Central
Google Scholar