Fang Z, Cui X. Design and validation issues in RNA-seq experiments. Brief Bioinform. 2011;12(3):280–7.
Article
CAS
PubMed
Google Scholar
Rockett JC, Hellmann GM. Confirming microarray data--is it really necessary? Genomics. 2004;83(4):541–9.
Article
CAS
PubMed
Google Scholar
Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, et al. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem. 2005;344(1):141–3.
Article
CAS
PubMed
Google Scholar
Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, et al. Housekeeping genes as internal standards: use and limits. J Biotechnol. 1999;75(2–3):291–5.
Article
CAS
PubMed
Google Scholar
Kozera B, Rapacz M. Reference genes in real-time PCR. J Appl Genet. 2013;54(4):391–406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chervoneva I, Li Y, Schulz S, Croker S, Wilson C, Waldman SA, et al. Selection of optimal reference genes for normalization in quantitative RT-PCR. BMC Bioinformatics. 2010;11:253.
Article
PubMed
PubMed Central
CAS
Google Scholar
de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, Kamps WA, et al. Evidence based selection of housekeeping genes. PLoS One. 2007;2(9):e898.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brinkhof B, Spee B, Rothuizen J, Penning LC. Development and evaluation of canine reference genes for accurate quantification of gene expression. Anal Biochem. 2006;356(1):36–43.
Article
CAS
PubMed
Google Scholar
Peters IR, Peeters D, Helps CR, Day MJ. Development and application of multiple internal reference (housekeeper) gene assays for accurate normalisation of canine gene expression studies. Vet Immunol Immunopathol. 2007;117(1–2):55–66.
Article
CAS
PubMed
Google Scholar
Etschmann B, Wilcken B, Stoevesand K, von der Schulenburg A, Sterner-Kock A. Selection of reference genes for quantitative real-time PCR analysis in canine mammary tumors using the GeNorm algorithm. Vet Pathol. 2006;43(6):934–42.
Article
CAS
PubMed
Google Scholar
Lee PD, Sladek R, Greenwood CM, Hudson TJ. Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res. 2002;12(2):292–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kowalewski MP. Selected Comparative Aspects of Canine Female Reproductive Physiology. Encyclopedia Reprod. 2018:682–91.
Concannon PW. Reproductive cycles of the domestic bitch. Anim Reprod Sci. 2011;124(3–4):200–10.
Article
CAS
PubMed
Google Scholar
Kowalewski MP, Gram A, Kautz E, Graubner FR. The dog: nonconformist, not only in maternal recognition signaling. Adv Anat Embryol Cell Biol. 2015;216:215–37.
Article
PubMed
Google Scholar
Kowalewski MP. Regulation of Corpus Luteum function in the domestic dog (Canis familiaris) and comparative aspects of luteal function in the domestic cat (Felis catus). In: Meidan R, editor. The life cycle of the Corpus Luteum. Cham: Springer International Publishing; 2017. p. 133–57.
Chapter
Google Scholar
Concannon PW, Hansel W, Visek WJ. The ovarian cycle of the bitch: plasma estrogen, LH and progesterone. Biol Reprod. 1975;13(1):112–21.
Article
CAS
PubMed
Google Scholar
Hoffmann B, Hoveler R, Nohr B, Hasan SH. Investigations on hormonal changes around parturition in the dog and the occurrence of pregnancy-specific non conjugated oestrogens. Exp Clin Endocrinol. 1994;102(3):185–9.
Article
CAS
PubMed
Google Scholar
Nishiyama T, Tsumagari S, Ito M, Kimura J, Watanabe G, Taya K, et al. Immunohistochemical study of steroidogenic enzymes in the ovary and placenta during pregnancy in the dog. Anat Histol Embryol. 1999;28(2):125–9.
Article
CAS
PubMed
Google Scholar
Kowalewski MP. Luteal regression vs. prepartum luteolysis: regulatory mechanisms governing canine corpus luteum function. Reprod Biol. 2014;14(2):89–102.
Article
PubMed
Google Scholar
Hoffmann B, Höveler R, Hasan SH, Failing K. Ovarian and pituitary functions in dog after hysterectomy. J Reprod Fertil. 1992;96:837–45.
Article
CAS
PubMed
Google Scholar
Nohr B, Hoffmann B, Steinetz BE. Investigation of the endocrine control of parturition in the dog by application of an antigestagen. J Reprod Fertil Suppl. 1993;47:542–3.
CAS
PubMed
Google Scholar
Kowalewski MP, Beceriklisoy HB, Pfarrer C, Aslan S, Kindahl H, Kucukaslan I, et al. Canine placenta: a source of prepartal prostaglandins during normal and antiprogestin-induced parturition. Reproduction. 2010;139(3):655–64.
Article
CAS
PubMed
Google Scholar
Gram A, Fox B, Buchler U, Boos A, Hoffmann B, Kowalewski MP. Canine placental prostaglandin E2 synthase: expression, localization, and biological functions in providing substrates for prepartum PGF2alpha synthesis. Biol Reprod. 2014;91(6):154.
Article
PubMed
CAS
Google Scholar
Vermeirsch H, Simoens P, Lauwers H. Immunohistochemical detection of the estrogen receptor-alpha and progesterone receptor in the canine pregnant uterus and placental labyrinth. Anat Rec. 2000;260(1):42–50.
Article
CAS
PubMed
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):Research0034.
Article
PubMed
PubMed Central
Google Scholar
Gram A, Hoffmann B, Boos A, Kowalewski MP. Expression and localization of vascular endothelial growth factor a (VEGFA) and its two receptors (VEGFR1/FLT1 and VEGFR2/FLK1/KDR) in the canine corpus luteum and utero-placental compartments during pregnancy and at normal and induced parturition. Gen Comp Endocrinol. 2015;223:54–65.
Article
CAS
PubMed
Google Scholar
Zatta S, Rehrauer H, Gram A, Boos A, Kowalewski MP. Transcriptome analysis reveals differences in mechanisms regulating cessation of luteal function in pregnant and non-pregnant dogs. BMC Genomics. 2017;18(1):757.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kautz E, Gram A, Aslan S, Ay SS, Selcuk M, Kanca H, et al. Expression of genes involved in the embryo-maternal interaction in the early-pregnant canine uterus. Reproduction. 2014;147(5):703–17.
Article
CAS
PubMed
Google Scholar
Macrae T, Sargeant T, Lemieux S, Hebert J, Deneault E, Sauvageau G. RNA-Seq reveals spliceosome and proteasome genes as most consistent transcripts in human cancer cells. PLoS One. 2013;8(9):e72884.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorenzetti WR, Ibelli AMG, Peixoto JO, Mores MAZ, Savoldi IR, Carmo KBD, et al. Identification of endogenous normalizing genes for expression studies in inguinal ring tissue for scrotal hernias in pigs. PLoS One. 2018;13(9):e0204348.
Article
PubMed
PubMed Central
CAS
Google Scholar
Niu G, Yang Y, Zhang Y, Hua C, Wang Z, Tang Z, et al. Identifying suitable reference genes for gene expression analysis in developing skeletal muscle in pigs. PeerJ. 2016;4:e2428.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marques-Oliveira GH, Silva TM, Valadares HMS, Raposo HF, Carolino ROG, Garofalo MAR, et al. Identification of suitable reference genes for quantitative gene expression analysis in innervated and Denervated adipose tissue from cafeteria diet-fed rats. Lipids. 2019;54(4):231–44.
Article
CAS
PubMed
Google Scholar
Kriegova E, Arakelyan A, Fillerova R, Zatloukal J, Mrazek F, Navratilova Z, et al. PSMB2 and RPL32 are suitable denominators to normalize gene expression profiles in bronchoalveolar cells. BMC Mol Biol. 2008;9:69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bages S, Estany J, Tor M, Pena RN. Investigating reference genes for quantitative real-time PCR analysis across four chicken tissues. Gene. 2015;561(1):82–7.
Article
CAS
PubMed
Google Scholar
Olias P, Adam I, Meyer A, Scharff C, Gruber AD. Reference genes for quantitative gene expression studies in multiple avian species. PLoS One. 2014;9(6):e99678.
Article
PubMed
PubMed Central
Google Scholar
Rogerio LA, Galdeano DM, Arena GD, Nunes MA, Machado MA, Novelli VM. Reference genes for gene expression studies by RT-qPCR in Brevipalpus yothersi (Acari: Tenuipalpidae), the mite vector of citrus leprosis virus. Sci Rep. 2019;9(1):6536.
Article
PubMed
PubMed Central
CAS
Google Scholar
Park SJ, Huh JW, Kim YH, Lee SR, Kim SH, Kim SU, et al. Selection of internal reference genes for normalization of quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis in the canine brain and other organs. Mol Biotechnol. 2013;54(1):47–57.
Article
CAS
PubMed
Google Scholar
Tsai PC, Breen M. Array-based comparative genomic hybridization-guided identification of reference genes for normalization of real-time quantitative polymerase chain reaction assay data for lymphomas, histiocytic sarcomas, and osteosarcomas of dogs. Am J Vet Res. 2012;73(9):1335–43.
Article
CAS
PubMed
Google Scholar
Nowak M, Rehrauer H, Ay SS, Findik M, Boos A, Kautz E, et al. Gene expression profiling of the canine placenta during normal and antigestagen-induced luteolysis. Gen Comp Endocrinol. 2019;282:113194.
Graubner FR, Gram A, Kautz E, Bauersachs S, Aslan S, Agaoglu AR, et al. Uterine responses to early pre-attachment embryos in the domestic dog and comparisons with other domestic animal species. Biol Reprod. 2017;97(2):197–216.
Article
PubMed
PubMed Central
Google Scholar
Tavares Pereira M, Graubner FR, Rehrauer H, Janowski T, Hoffmann B, Boos A, et al. Global transcriptomic analysis of the canine corpus luteum(CL) during the first half of diestrus and changes induced by in vivoinhibition of prostaglandin synthase 2 (PTGS2/COX2). Front Endocrinol. 2019;13(10):715.
Article
Google Scholar
Voorwald FA, Marchi FA, Villacis RA, Alves CE, Toniollo GH, Amorim RL, et al. Molecular expression profile reveals potential biomarkers and therapeutic targets in canine endometrial lesions. PLoS One. 2015;10(7):e0133894.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hagman R, Ronnberg E, Pejler G. Canine uterine bacterial infection induces upregulation of proteolysis-related genes and downregulation of homeobox and zinc finger factors. PLoS One. 2009;4(11):e8039.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bukowska D, Kempisty B, Zawierucha P, Jopek K, Piotrowska H, Antosik P, et al. Microarray analysis of inflammatory response-related gene expression in the uteri of dogs with pyometra. J Biol Regul Homeost Agents. 2014;28(4):637–48.
CAS
PubMed
Google Scholar
Kowalewski MP, Ihle S, Siemieniuch MJ, Gram A, Boos A, Zdunczyk S, et al. Formation of the early canine CL and the role of prostaglandin E2 (PGE2) in regulation of its function: an in vivo approach. Theriogenology. 2015;83(6):1038–47.
Article
CAS
PubMed
Google Scholar
Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 2012;80:75–84.
Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–50.
Article
CAS
PubMed
Google Scholar
Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol. 2006;7:33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26(6):509–15.
Article
CAS
PubMed
Google Scholar
Kowalewski MP, Schuler G, Taubert A, Engel E, Hoffmann B. Expression of cyclooxygenase 1 and 2 in the canine corpus luteum during diestrus. Theriogenology. 2006;66(6–7):1423–30.
Article
CAS
PubMed
Google Scholar
Kowalewski MP, Meyer A, Hoffmann B, Aslan S, Boos A. Expression and functional implications of peroxisome proliferator-activated receptor gamma (PPARgamma) in canine reproductive tissues during normal pregnancy and parturition and at antiprogestin induced abortion. Theriogenology. 2011;75(5):877–86.
Article
CAS
PubMed
Google Scholar