Chastant-Maillard S, Aggouni C, Albaret A, Fournier A, Mila H. Canine and feline colostrum. Reprod Domest Anim. 2017;52(Suppl 2):148–52.
Article
CAS
Google Scholar
Bouchard G, Plata-Madrid H, Youngquist RS, Buening GM, Ganjam VK, Krause GF, et al. Absorption of an alternate source of immunoglobulin in pups. Am J Vet Res. 1992;53:230–3.
CAS
Google Scholar
Mila H, Feugier A, Grellet A, Anne J, Gonnier M, Martin M, et al. Inadequate passive immune transfer in puppies: definition, risk factors and prevention in a large multi-breed kennel. Prev Vet Med. 2014;116:209–13.
Article
CAS
Google Scholar
Mila H, Feugier A, Grellet A, Anne J, Gonnier M, Martin M, et al. Immunoglobulin G concentration in canine colostrum: evaluation and variability. J Reprod Immunol. 2015;112:24–8.
Article
CAS
Google Scholar
Chastant-Maillard S, Freyburger L, Marcheteau E, Thoumire S, Ravier JF, Reynaud K. Timing of the intestinal barrier closure in puppies. Reprod Domest Anim. 2012;47(Suppl 6):190–3.
Article
Google Scholar
De la Torre GC, Goreham RV, Bech Serra JJ, Nann T, Kussmann M. “Exosomics”- a review of biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk. Front Genet. 2018;9:92.
Article
CAS
Google Scholar
Zempleni J, Aguilar-Lozano A, Sadri M, Sukreet S, Manca S, Wu D, et al. Biological activities of extracellular vesicles and their cargos from bovine and human Milk in humans and implications for infants. J Nutr. 2017;147:3–10.
Article
CAS
Google Scholar
Zempleni J, Sukreet S, Zhou F, Wu D, Mutai E. Milk-derived Exosomes and metabolic regulation. Annu Rev Anim Biosci. 2018;7:245–62.
Article
CAS
Google Scholar
Van Herwijnen MJC, Driedonks TAP, Snoek BL, Kroon AMT, Kleinjan M, Jorritsma R, et al. Abundantly present miRNAs in Milk-derived extracellular vesicles are conserved between mammals. Front Nutr. 2018;5:81.
Article
CAS
Google Scholar
Kalra H, Drummen GP, Mathivanan S. Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci. 2016;17:170.
Article
CAS
Google Scholar
Liao Y, Du X, Li J, Lonnerdal B. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol Nutr Food Res. 2017;61.
Benmoussa A, Lee CH, Laffont B, Savard P, Laugier L, Boilard E, et al. Commercial dairy cow Milk microRNAs resist digestion under simulated gastrointestinal tract conditions. J Nutr. 2016;146:2206–15.
Article
CAS
Google Scholar
Chen T, Xie MY, Sun JJ, Ye RS, Cheng X, Sun RP, et al. Porcine milk-derived exosomes promote proliferation of intestinal epithelial cells. Sci Rep. 2016;6:33862.
Article
CAS
Google Scholar
Kahn S, Liao Y, Du X, Xu W, Li J, Lonnerdal B. Exosomal MicroRNAs in Milk from mothers delivering preterm infants survive in vitro digestion and are taken up by human intestinal cells. Mol Nutr Food Res. 2018;62.
Wolf T, Baier SR, Zempleni J. The intestinal transport of bovine milk exosomes is mediated by endocytosis in human colon carcinoma Caco-2 cells and rat small intestinal IEC-6 Cells. J Nutr. 2015;145:2201–6.
Article
CAS
Google Scholar
Melnik BC, Schmitz G. MicroRNAs: Milk’s epigenetic regulators. Best Pract Res Clin Endocrinol Metab. 2017;431:427–42.
Article
CAS
Google Scholar
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med. 2019;17:3.
Article
Google Scholar
Hock A, Miyake H, Li B, Lee C, Ermini L, Koike Y, et al. Breast milk-derived exosomes promote intestinal epithelial cell growth. J Pediatr Surg. 2017;52:755–9.
Article
Google Scholar
Ma J, Wang C, Long K, Zhang H, Zhang J, Jin L, et al. Exosomal microRNAs in giant panda (Ailuropoda melanoleuca) breast milk: potential maternal regulators for the development of newborn cubs. Sci Rep. 2017;7:3507.
Article
CAS
Google Scholar
Sedykh SE, Purvinish LV, Monogarov AS, Burkova EE, Grigor'eva AE, Bulgakov DV, et al. Purified horse milk exosomes contain an unpredictable small number of major proteins. Biochim Open. 2017;4:61–72.
Article
Google Scholar
Badawy AA, El-Magd MA, AlSadrah SA. Therapeutic effect of camel Milk and its Exosomes on MCF7 cells in vitro and in vivo. Integr Cancer Ther. 2018;17:1235–46.
Article
CAS
Google Scholar
Pieters BC, Arntz OJ, Bennink MB, Broeren MG, van Caam AP, Koenders MI, et al. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β. PLoS One. 2015;10.
Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang X, et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One. 2012;7:e43691.
Article
CAS
Google Scholar
Baddela VS, Nayan V, Rani P, Onteru SK, Singh D. Physicochemical biomolecular insights into Buffalo Milk-derived Nanovesicles. Appl Biochem Biotechnol. 2016;178:544–57.
Article
CAS
Google Scholar
Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007;179:1969–78.
Article
CAS
Google Scholar
Gao HN, Guo HY, Zhang H, Xie XL, Wen PC, Ren FZ. Yak-milk-derived exosomes promote proliferation of intestinal epithelial cells in an hypoxic environment. J Dairy Sci. 2019;102:985–96.
Article
CAS
Google Scholar
Aguilera-Rojas M, Badewien-Rentzsch B, Plendl J, Kohn B, Einspanier R. Exploration of serum- and cell culture-derived exosomes from dogs. BMC Vet Res. 2018;14:179.
Article
CAS
Google Scholar
Osamu I, Ohta H, Horino T, Nakamura T, Hosotani M, Mizoguchi T, et al. Urinary exosome-derived microRNAs reflecting the changes of renal function and histopathology in dogs. Sci Rep. 2017;7:40340.
Article
CAS
Google Scholar
Villatoro AJ, Alcoholado C, Martin-Astorga MC, Fernandez V, Cifuentes M, Becerra J. Comparative analysis and characterization of soluble factors and exosomes from cultured adipose tissue and bone marrow mesenchymal stem cells in canine species. Vet Immunol Immunopathol. 2019;208:6–15.
Article
CAS
Google Scholar
Casanas J, de la Torre J, Soler F, Garcia F, Rodellar C, Pumarola M, et al. Peripheral nerve regeneration after experimental section in ovine radial and tibial nerves using synthetic nerve grafts, including expanded bone marrow mesenchymal cells: morphological and neurophysiological results. Injury. 2014;45(Suppl 4):S2–6.
Article
Google Scholar
Kang BJ, Lee SH, Kweon OK, Cho JY. Differentiation of canine adipose tissue-derived mesenchymal stem cells towards endothelial progenitor cells. Am J Vet Res. 2014;75:685–91.
Article
CAS
Google Scholar
Bearden RN, Huggins SS, Cummings KJ, Smith R, Gregory CA, Saunders WB. In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study. Stem Cell Res Ther. 2017;8:218.
Article
CAS
Google Scholar
Villatoro AJ, Fernandez V, Claros S, Rico-Llanos GA, Becerra J, Andrades JA. Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model. Biomed Res Int. 2015;527926.
Villatoro AJ, Hermida-Prieto M, Fernandez V, Farinas F, Alcoholado C, Rodriguez-Garcia MI, et al. Allogeneic adipose-derived mesenchymal stem cell therapy in dogs with refractory atopic dermatitis: clinical efficacy and safety. Vet Rec. 2018;183:654.
Article
Google Scholar
Vannucchi CI, Kishi D, Regazzi FM, Silva L, Veiga G, Angrimani D, et al. The oxidative stress, antioxidant profile and acid-base status in preterm and term canine neonates. Reprod Domest Anim. 2015;50:240–6.
Article
CAS
Google Scholar
Beharry KD, Cai CL, Valencia GB, Valencia AM, Lazzaro DR, Bany-Mohammed F, et al. Neonatal Intermittent Hypoxia, Reactive Oxygen Species, and Oxygen-Induced Retinopathy. React Oxyg Species (Apex). 2017;3:12–25.
Google Scholar
Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol. 2010;42:1634–50.
Article
CAS
Google Scholar
Abuelo A, Perez-Santos M, Hernandez J, Castillo C. Effect of colostrum redox balance on the oxidative status of calves during the first 3 months of life and the relationship with passive immune acquisition. Vet J. 2014;199:295–9.
Article
CAS
Google Scholar
Castillo-Castaneda PC, Garcia-Gonzalez A, Bencomo-Alvarez AE, Barros-Nunez P, Gaxiola-Robles R, Mendez-Rodriguez LC, et al. Micronutrient content and antioxidant enzyme activities in human breast milk. J Trace Elem Med Biol. 2019;51:36–41.
Article
CAS
Google Scholar
Lener T, Gimona M, Aigner L, Borger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles. 2015;4:30087.
Article
CAS
Google Scholar
Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913.
Article
Google Scholar
Reiner AT, Witwer KW, van Balkom BWM, de Beer J, Brodie C, Corteling RL, et al. Concise review: developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl Med. 2017;6:1730–9.
Article
Google Scholar
Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6:267–83.
Article
CAS
Google Scholar
Yang M, Song D, Cao X, Wu R, Liu B, Ye W, et al. Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS. Food Res Int. 2017;92:17–25.
Article
CAS
Google Scholar
Mitsialis S, Kourembanas S. Stem cell–based therapies for the newborn lung and brain: possibilities and challenges. Semin Perinatol. 2016;40(3):138–51.
Article
Google Scholar
Mila H, Grellet A, Mariani C, Feugier A, Guard B, Suchodolski J, et al. Natural and artificial hyperimmune solutions: impact on health in puppies. Reprod Domest Anim. 2017;52(Suppl 2):163–9.
Article
CAS
Google Scholar
Kienzle E, Zentek J, Meyer H. Body composition of puppies and young dogs. J Nutr. 1998;128:2680s–3s.
Article
CAS
Google Scholar
Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Obes Res. 1997;5:650–6.
Article
CAS
Google Scholar
Lee YH, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta. 1842;2014:358–69.
Google Scholar
Chen Y, Pan R, Pfeifer A. Regulation of brown and beige fat by microRNAs. Pharmacol Ther. 2017;170:1–7.
Article
CAS
Google Scholar
De Bakker E, Van Ryssen B, De Schauwer C, Meyer E. Canine mesenchymal stem cells: state of the art, perspectives as therapy for dogs and as a model for man. Vet Q. 2013;33:225–33.
Article
Google Scholar
Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res. 2012;53:227–46.
Article
CAS
Google Scholar
Schinkothe T, Bloch W, Schmidt A. In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev. 2008;17:199–206.
Article
CAS
Google Scholar
Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells. 2014;6:552–70.
Article
Google Scholar
Kishimoto T. IL-6: from its discovery to clinical applications. Int Immunol. 2010;22:347–52.
Article
CAS
Google Scholar
Vignali DA, Kuchroo VK. IL-12 family cytokines: immunological playmakers. Nat Immunol. 2012;13:722–8.
Article
CAS
Google Scholar
Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013;13:392–402.
Article
CAS
Google Scholar
Glenn JD, Whartenby KA. Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World J Stem Cells. 2014;6:526–39.
Article
Google Scholar
Le Blanc K, Davies LC. Mesenchymal stromal cells and the innate immune response. Immunol Lett. 2015;168:140–6.
Article
CAS
Google Scholar
Birch AM, McGarry NB, Kelly ÁM. Short-term environmental enrichment, in the absence of exercise, improves memory, and increases NGF concentration, early neuronal survival, and synaptogenesis in the dentate gyrus in a time-dependent manner. Hippocampus. 2013;23:437–50.
Article
CAS
Google Scholar
Shohayeb B, Diab M, Ahmed M, Chi Hiung Ng D. Factors that influence adult neurogenesis as potential therapy. Transl Neurodegener. 2018;7:4.
Article
CAS
Google Scholar
Le Doare K, Holder B, Bassett A, Pannaraj PS. Mother's Milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol. 2018;28:9–361.
Google Scholar
Birben E, Sahiner JM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5:9–19.
Article
CAS
Google Scholar
Kimura T, Kotani K. Perinatal veterinary medicine-related evaluation in hematological and serum biochemical profiles of experimental beagles throughout pregnancy and parturition. Anim Model Exp Med. 2018:282–94.
Dani C, Poggi C, Fancelli C. Changes in bilirubin in infants with hypoxic-ischemic encephalopathy. Eur J Pediatr. 2018;177:1795–801.
Article
CAS
Google Scholar
Mutinati M, Pantaleo M, Roncetti M, Piccinno M, Rizzo A, Sciorsci RL. Oxidative stress in neonatology: a review. Reprod Domest Anim. 2014;49:7–16.
Article
CAS
Google Scholar
Soni H, Yakimkova T, Read RW, Buddington RK. Early onset of renal oxidative stress in small for gestational age newborn pigs. Redox Rep. 2019;24:10–6.
Article
CAS
Google Scholar
Stenmark KR, Yeager ME, El Kasmi KC, Nozik-Grayck E, Gerasimovskaya EV, Li M, Riddle SR, Frid MG. The adventitia: essential regulator of vascular wall structure and function. Annu Rev Physiol. 2013;75:23–47.
Article
CAS
Google Scholar
Wedgwood S, Steinhorn RH. Role of reactive oxygen species in neonatal pulmonary vascular disease. Antioxid Redox Signal. 2014;21(13):1926–42.
Article
CAS
Google Scholar
Przybylska J, Albera E, Kankofer M. Antioxidants in bovine colostrum. Reprod Domest Anim. 2007;42:402–9.
Article
CAS
Google Scholar
Buescher ES, McIlheran SM. Colostral antioxidants: separation and characterization of two activities in human colostrum. J Pediatr Gastroenterol Nutr. 1992;14:47–56.
Article
CAS
Google Scholar
Marinković V, Ranković-Janevski M, Spasić S, Nikolić-Kokić A, Lugonja N, Djurović D, et al. Antioxidative activity of colostrum and human Milk: effects of pasteurization and storage. J Pediatr Gastroenterol Nutr. 2016;62:901–6.
Article
CAS
Google Scholar
Silberstein T, Hamou B, Cervil S, Barak T, Burg A, Saphier O. Colostrum of Preeclamptic women has a high level of polyphenols and better resistance to oxidative stress in comparison to that of healthy women. Oxidative Med Cell Longev. 2019;1380605:1–5.
Article
CAS
Google Scholar
Morrill KM, Conrad E, Polo J, Lago A, Campbell J, Quigley J, Tyler H. Estimate of colostral immunoglobulin G concentration using refractometry without or with caprylic acid fractionation. J Dairy Sci. 2012;95:3987–96.
Article
CAS
Google Scholar
Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett. 2016;371:48–61.
Article
CAS
Google Scholar
Haraszti RA, Didiot MC, Sapp E, Leszyk J, Shaffer SA, Rockwell HE, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 2016;5:32570.
Article
CAS
Google Scholar
Schey KL, Luther JM, Rose KL. Proteomics characterization of exosome cargo. Methods. 2015;87:75–82.
Article
CAS
Google Scholar
Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX. Exosomes derived from Mesenchymal stem cells rescue myocardial Ischaemia/reperfusion injury by inducing Cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem. 2017;43:52–68.
Article
CAS
Google Scholar