Pollaci G, Ceraulo S. Das agglutinationsvermögen einiger körperflüssigkeiten beim Mediterran-fieber [The agglutinating properties of several body fluids during Malta Fever]. Centralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten (I). Abbott Originale. 1909;52:268–75.
Google Scholar
Wills RW, Zimmerman JJ, Yoon KJ, Swenson SL, Hoffman LJ, McGinley MJ, et al. Porcine reproductive and respiratory syndrome virus: excretion routes. Vet Microbiol. 1997;57:69–81.
Article
CAS
Google Scholar
Prickett JR, Kim W, Simer R, Yoon KJ, Zimmerman JJ. Oral-fluid samples for the surveillance of commercial growing pigs for porcine reproductive and respiratory syndrome virus and porcine circovirus type 2 infections. J Swine Health Prod. 2008;16(2):86–91.
Google Scholar
White D, Rotolo M, Olsen C, Wang C, Prickett J, Kittawornrat A, et al. Recommendations for pen-based oral-fluid collection in growing pigs. J Swine Health Prod. 2014;22(3):138–41.
Google Scholar
Bjustrom-Kraft J, Christopher-Hennings J, Daly R, et al. The use of oral fluid diagnostics in swine medicine. J Swine Health Prod. 2018;26(5):262–9.
Google Scholar
Panyasing Y, Thanawongnuwech R, Ji J, Giménez-Lirola L, Zimmerman JJ. Detection of classical swine fever virus (CSFV) E2 and Erns antibody (IgG, IgA) in oral fluid specimens from inoculated (ALD strain) or vaccinated (LOM strain) pigs. Vet Microbiol. 2018;224:70–7. https://doi.org/10.1016/j.vetmic.2018.08.024.
Article
CAS
PubMed
Google Scholar
Barrera-Zarate JA, Andrade MR, Pereira CER, Vasconcellos A, Wagatsuma MM, Sato JPH, et al. Oral fluid for detection of exposure to Lawsonia intracellularis in naturally infected pigs. Vet J. 2019;244:34–6. https://doi.org/10.1016/j.tvjl.2018.12.003.
Article
CAS
PubMed
Google Scholar
Prims S, Van Raemdonck G, Vanden Hole C, Van Cruchten S, Van Ginneken C, Van Ostade X, et al. On the characterisation of the porcine gland-specific salivary proteome. J Proteome. 2019;196:92–105. https://doi.org/10.1016/j.jprot.2019.01.016.
Article
CAS
Google Scholar
Jones TH, Muehlhauser V. Effect of handling and storage conditions, and stabilising agent on the recovery of viral RNA from pig oral fluid. J Virol Methods. 2014;198:26–31. https://doi.org/10.1016/j.jviromet.2013.12.11.
Article
CAS
PubMed
Google Scholar
Holtkamp D, Kliebenstein J, Neumann E, Zimmerman JJ, Rotto H, Yoder T, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on U.S. pork producers. J Swine Health Prod. 2013;21:72–84.
Google Scholar
Alonso C, Murtaugh MP, Dee SA, Davies PR. Epidemiological study of air filtration systems for preventing PRRSV infection in large sow herds. Prev Vet Med. 2013;112(1–2):109–17.
Article
Google Scholar
Schelkopf A, Nerema J, Cowles B, Amodie D, Swalla R, Dee S. Reproductive, productivity, and mortality outcomes in late-gestation gilts and their litters following simulation of inadvertent exposure to a modified-live vaccine strain of porcine reproductive and respiratory syndrome (PRRS) virus. Vaccine. 2014;32:4639–43. https://doi.org/10.1016/j.vaccine.2014.06.073.
Article
CAS
PubMed
Google Scholar
Colson P, Borentain P, Queyriaux B, Kaba M, Moal V, Gallian P, et al. Pig liver sausage as a source of hepatitis E virus transmission to humans. J Infect Dis. 2010;202(6):825–34. https://doi.org/10.1086/655898.
Article
PubMed
Google Scholar
Stanaway JD, Flaxman AD, Naghavi M, Fitzmaurice C, Vos T, Abubakar I, et al. The global burden of viral hepatitis between 1990 to 2013: findings from the global burden of disease study 2013. Lancet. 2016;388:1081–8.
Article
Google Scholar
Ramirez A, Wang C, Prickett JR, Pogranichniy R, Yoon KJ, Main R, et al. Efficient surveillance of pig populations using oral fluids. Prev Vet Med. 2012;104:292–300.
Article
Google Scholar
Murtaugh MP, Xiao Z, Zuckermann F. Immunological responses of swine to porcine reproductive and respiratory syndrome virus infection. Viral Immunol. 2002;15(4):533–47. https://doi.org/10.1089/088282402320914485.
Article
CAS
PubMed
Google Scholar
Rodríguez-Arrioja GM, Segalés J, Calsamiglia M, Resendes AR, Balasch M, Plana-Duran J, et al. Dynamics of porcine circovirus type 2 infection in a herd of pigs with postweaning multisystemic wasting syndrome. Am J Vet Res. 2002;63(3):354–7.
Article
Google Scholar
Takahashi M, Nishizawa T, Miyajima H, Gotanda Y, Iita T, Tsuda F, et al. Swine hepatitis E virus strains in Japan form four phylogenetic clusters comparable with those of Japanese isolates of human hepatitis E virus. J Gen Virol. 2003;84(4):851–62.
Article
CAS
Google Scholar
Zimmerman JJ, Benfield DA, Dee SA, Murtaugh MP, Stadjek T, Stevenson GW, et al. Porcine reproductive and respiratory syndrome virus (porcine Arterivirus). In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, editors. Diseases of swine. 10th ed. Ames: Wiley-Blackwell; 2012. p. 461–86.
Nielsen GB, Nielsen JP, Haugegaard J, Leth SC, Larsen LE, Kristensen CS, et al. Comparison of serum pools and oral fluid samples for the detection of porcine circovirus type 2 by quantitative real-time PCR in finisher pigs. Porcine Health Manag. 2018;4:2. https://doi.org/10.1186/s40813-018-0079-4.
Article
PubMed
PubMed Central
Google Scholar
Prickett JR, Johnson J, Murtaugh MP, Puvanendiran S, Wang C, Zimmerman JJ, Opriessnig T. Prolonged detection of PCV2 and anti-PCV2 antibody in oral fluids following experimental inoculation. Transbound Emerg Dis. 2011;58:121–7. https://doi.org/10.1111/j.1865-1682.2010.01189.x.
Article
CAS
PubMed
Google Scholar
Prickett JR, Zimmerman JJ. The development of oral fluid-based diagnostics and applications in veterinary medicine. Anim Health Res Rev. 2010;11:207–16.
Article
Google Scholar
Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques. 2004;36(5):808–12.
Article
CAS
Google Scholar
Rådström P, Knutsson R, Wolffs P, Lövenklev M, Löfström C. Pre-PCR processing. Mol Biotechnol. 2004;26:133. https://doi.org/10.1385/MB:26:2:133.
Article
PubMed
Google Scholar
Malorny B, Hoorfar J. Toward standardization of diagnostic PCR testing of fecal samples: lessons from the detection of salmonellae in pigs. J Clin Microbiol. 2005;43(7):3033–7.
Article
CAS
Google Scholar
Raboud JM, Major C, Sherlock C, O'Shaughnessy MV. The effects of pooling serum samples from seroconverting individuals or individuals with end stage disease for HIV antibody testing: a comparison of four screen tests and three pool sizes. Serodiagn Immunother Infect Dis. 1996;8(1):19–24. https://doi.org/10.1016/S0888-0786(96)80017-5.
Article
Google Scholar
Salines M, Andraud M, Pellerin M, Bernard C, Grasland B, Pavio N, et al. Impact of porcine circovirus type 2 (PCV2) infection on hepatitis E virus (HEV) infection and transmission under experimental conditions. Vet Microbiol. 2019;234:1–7. https://doi.org/10.1016/j.vetmic.2019.05.010.
Article
CAS
PubMed
Google Scholar
Salines M, Dumarest M, Andraud M, Mahé S, Barnaud E, Cineux M, et al. Natural viral co-infections in pig herds affect hepatitis E virus (HEV) infection dynamics and increase the risk of contaminated livers at slaughter. Transbound Emerg Dis. 2019;66:1930–45.
Article
CAS
Google Scholar
Yang Y, Shi R, She R, Mao J, Zhao Y, Du F, et al. Fatal disease associated with swine hepatitis E virus and porcine circovirus 2 co-infection in four weaned pigs in China. BMC Vet Res. 2015;11:77. https://doi.org/10.1186/s12917-015-0375-z.
Article
PubMed
PubMed Central
Google Scholar
Christianson WT, Choi CS, Collins JE, Molitor TW, Morrison RB, Joo HS. Pathogenesis of porcine reproductive and respiratory syndrome virus infection in mid-gestation sows and fetuses. Can J Vet Res. 1993;57(4):262–8.
CAS
PubMed
PubMed Central
Google Scholar
Feng H, Segalés J, Fraile L, López-Soria S, Sibila M. Effect of high and low levels of maternally derived antibodies on porcine circovirus type 2 (PCV2) infection dynamics and production parameters in PCV2 vaccinated pigs under field conditions. Vaccine. 2016;34(27):3044–50.
Article
CAS
Google Scholar
Carasova P, Celer V, Takacova K, Trundova M, Molinkova D, Lobova D, et al. The levels of PCV2 specific antibodies and viremia in pigs. Res Vet Sci. 2007;83(2):274–8. https://doi.org/10.1016/j.rvsc.2006.11.13.
Article
CAS
PubMed
Google Scholar
Grau-Roma L, Hjulsager CK, Sibila M, Kristensen CS, López-Soria S, Enøe C, et al. Infection, excretion and seroconversion dynamics of porcine circovirus type 2 (PCV2) in pigs from post-weaning multisystemic wasting syndrome (PMWS) affected farms in Spain and Denmark. Vet Microbiol. 2009;135(3–4):272–82. https://doi.org/10.1016/j.vetmic.2008.10.07.
Article
CAS
PubMed
Google Scholar
Meng XJ, Halbur PG, Shapiro MS, Govindarajan S, Bruna JD, Mushahwar IK, et al. Genetic and experimental evidence for cross-species infection by swine hepatitis E virus. J Virol. 1998;72(12):9714–21.
Article
CAS
Google Scholar
Meng XJ, Halbur PG, Opriessnig T. Hepatitis E Virus. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, editors. Diseases of swine. 10th ed. Ames: Wiley-Blackwell; 2012. p. 554–6.
Donadeu M, Arias M, Gomez-Tejedor C, Agüero M, Romero L, Christianson WT, Sánchez-Vizcaíno J. Using polymerase chain reaction to obtain PRRSV-free piglets from endemically infected herds. Swine Health Prod. 1999;7(6):255–61.
Grierson SS, King DP, Sandvik T, Hicks D, Spencer Y, Drew TW, Banks M. Detection and genetic typing of type 2 porcine circoviruses in archived pig tissues from the UK. Arch Virol. 2004;149(6):1171–83.
Article
CAS
Google Scholar
Jothikumar N, Cromeans TL, Robertson BH, Meng XJ, Hill VR. A broadly reactive one-step real-time RT-PCR assay for rapid and sensitive detection of hepatitis E virus. J Virol Methods. 2006;131(1):65–71.
Article
CAS
Google Scholar