Didion BA. Computer-assisten semen analysis and its utility for profiling boar semen samples. Theriogenology. 2008;70(8):1374–6.
Article
CAS
PubMed
Google Scholar
Verstegen J, Iguer-Ouada M, Onclin K. Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology. 2002;57:149–79.
Article
CAS
PubMed
Google Scholar
Mortimer ST. A critical review of the physiological importance and analysis of sperm movement in mammals. Hum Reprod Update. 1997;3(5):403–39.
Article
CAS
PubMed
Google Scholar
Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update. 2008;14(6):647–57.
Article
CAS
PubMed
Google Scholar
Schmidt H, Kamp G. Induced hyperactivity in boar spermatozoa and its evaluation by computer-assisted sperm analysis. Reproduction. 2004;128:171–9.
Article
CAS
PubMed
Google Scholar
Tremoen NH, Gaustad AH, Andersen-Ranberg I, van Son M, Zeremichael TT, Frydenlund K, Grindflek E, Våge DI, Myromslien FD. Relationship between sperm motility characteristics and ATP concentrations, and association with fertility in two different pig breeds. Anim Reprod Sci. 2018;193:226–34.
Article
CAS
PubMed
Google Scholar
Singh AP, Rajender S. CatSper channel, sperm function and male fertility. Reprod BioMed Online. 2015;30(1):28–38.
Article
PubMed
Google Scholar
Vicente-Carrillo A, Álvarez-Rodrìguez M, Rodríguez-Martínez H. The CatSper channel modulates boar sperm motility during capacitation. Reprod Biol. 2017;17(1):69–78.
Article
PubMed
Google Scholar
Dorin JR. Novel phenotype of mouse spermatozoa following deletion of nine β-defensin genes. Asian Journal of Andrology. 2015;17(5):716–9.
CAS
PubMed
PubMed Central
Google Scholar
Kwon WS, Rahman MS, Lee JS, Kim J, Yoon SJ, Park YJ, You YA, Hwang S, Pang MG. A comprehensive proteomic approach to identifying capacitation related proteins in boar spermatozoa. BMC Genomics. 2014;15:897.
Article
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;31(15):2114–20.
Article
CAS
Google Scholar
Warr A, Affara N, Aken B, Beiki H, Bickhart DM, Billis K, Chow W, Eory L, Finlayson HA, Flicek P et al: An improved pig reference genome sequence to enable pig genetics and genomics research. bioRxiv 2019.
Google Scholar
van Son M, Enger EG, Grove H, Ros-Freixedes R, Kent MP, Lien S, Grindflek E. Genome-wide association study confirm major QTL for backfat fatty acid composition on SSC14 in Duroc pigs. BMC Genomics. 2017;18(1):369.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mortimer ST, Swan MA, Mortimer D. Effect of seminal plasma on capacitation and hyperactivation in human spermatozoa. Hum Reprod. 1998;13(8):2139–46.
Article
CAS
PubMed
Google Scholar
Apić J, Stančić I, Vakanjac S, Radović I, Milovanović A, Barna T, Maletić M. Influence of the protein content of boar seminal plasma on spermatozoa viability, motility and acrosome integrity in diluted semen stored for 3 days. Anim Reprod. 2016;13(1):36–41.
Article
Google Scholar
Zhai P, Vu MT, Hoff KG, Silberg JJ. A conserved histidine in human DNLZ/HEP is required for stimulation of HSPA9 ATPase activity. Biochem Biophys Res Commun. 2011;408(4):589–94.
Article
CAS
PubMed
Google Scholar
Zhai P, Stanworth C, Liu S, Silberg JJ. The human escort protein Hep binds to the ATPase domain of mitochondrial hsp70 and regulates ATP hydrolysis. J Biol Chem. 2008;283(38):26098–106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashemitabar M, Sabbagh S, Orazizadeh M, Ghadiri A, Bahmanzadeh M. A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia. J Assist Reprod Genet. 2015;32(6):853–63.
Article
PubMed
PubMed Central
Google Scholar
Amaral A, Paiva C, Parrinello CA, Estanyol JM, Ballescà JL, Ramalho-Santos J, Oliva R. Identification of proteins involved in human sperm motility using high-throughput differential proteomics. J Proteome Res. 2014;13(12):5670–84.
Article
CAS
PubMed
Google Scholar
Shen MR, Linden J, Chiang PH, Chen SS, Wu SN. Adenosine stimulates human sperm motility via A2 receptors. J Pharm Pharmacol. 1993;45(7):650–3.
Article
CAS
PubMed
Google Scholar
Fénichel P, Gharib A, Emiliozzi C, Donzeau M, Ménézo Y. Stimulation of human sperm during capacitation in vitro by an adenosine agonist with specificity for A2 receptors. Biol Reprod. 1996;54(6):1405–11.
Article
PubMed
Google Scholar
Adeoya-Osiguwa SA, Fraser LR. Capacitation state-dependent changes in adenosine receptors and their regulation of adenylyl cyclase/cAMP. Mol Reprod Dev. 2002;63(2):245–55.
Article
CAS
PubMed
Google Scholar
Khatchadourian K, Smith CE, Metzler M, Gregory M, Hayden MR, Cyr DG, Hermo L. Structural abnormalities in spermatids together with reduced sperm counts and motility underlie the reproductive defect in HIP1−/− mice. Gamete Biology. 2006;74(3):341–59.
Google Scholar
Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen BM, Carrell DT. DNA integrity is compromised in protamine-deficient human sperm. J Androl. 2013;26(6):741–8.
Article
CAS
Google Scholar
Giwercman A, Richthoff J, Hjøllund H, Bonde JP, Jepson K, Frohm B, Spano M. Correlation between sperm motility and sperm chromatin structure assay parameters. Fertil Steril. 2003;80(6):1404–12.
Article
PubMed
Google Scholar
Grzmil P, Boinska D, Kleene KC, Adham I, Schlüter G, Kämper M, Buyandelger B, Meinhardt A, Wolf S, Engel W. Prm3, the fourth gene in the mouse protamine gene cluster, encodes a conserved acidic protein that affects sperm motility. Biol Reprod. 2008;78(6):958–67.
Article
CAS
PubMed
Google Scholar
Matsuura M, Yogo K. TMEM225: a possible protein phosphatase 1γ2 (PP1γ2) regulator localizes to the equatorial segment in mouse spermatozoa. Mol Reprod Dev. 2015;82(2):139–48.
Article
CAS
PubMed
Google Scholar
Baker MA, Reeves G, Hetherington L, Aitken RJ. Analysis of proteomic changes associated with sperm capacitation through the combined use of IPG-strip pre-fractionation followed by RP chromatography LC-MS/MS analysis. Proteomics. 2010;10(3):482–95.
Article
CAS
PubMed
Google Scholar
Zhang C, Yu Y, Zhang S, Liu M, Xing G, Wei H, Bi J, Liu X, Zhou G, Dong C, et al. Characterization, chromosomal assignment, and tissue expression of a novel human gene belonging to the ARF GAP family. Genomics. 2000;63(3):400–8.
Article
CAS
PubMed
Google Scholar
Funaki T, Kon S, Tanabe K, Natsume W, Sato S, Shimizu T, Yoshida N, Wong WF, Ogura A, Ogawa T, et al. The Arf GAP SMAP2 is necessary for organized vesicle budding from the trans-Golgi network and subsequent acrosome formation in spermiogenesis. Mol Biol Cell. 2013;24(17):2633–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartley JL, Zachos NC, Dawood B, Donowitz M, Forman J, Pollitt RJ, Morgan NV, Tee L, Gissen P, Kahr WH, et al. Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology. 2010;138(7):2388–98.
Article
CAS
PubMed
Google Scholar
Kropp J, Carrillo JA, Namous H, Daniels A, Salih SM, Song J, Khatib H. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics 2017. 2017;18:280.
Article
CAS
Google Scholar
Sullivan R. Epididymosomes: Role of extracellular microvesicles in sperm maturation. Front Biosci (Scholar edition). 2016;8:106–14.
Article
Google Scholar
Du J, Shen J, Wang Y, Pan C, Pang W, Diao H, Dong W. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane. Oncotarget. 2016;7(37):58832–47.
Article
PubMed
PubMed Central
Google Scholar
González-Cadavid V, Martins JA, Moreno FB, Andrade TS, Santos AC, Monteiro-Moreira AC, Moreira RA, Moura AA. Seminal plasma proteins of adult boars and correlations with sperm parameters. Theriogenology. 2014;82(5):697–707.
Article
PubMed
CAS
Google Scholar
Wennemuth G, Meinhardt A, Mallidis C, Albrecht M, Krause W, Renneberg H, Aumüller G. Assessment of fibronectin as a potential new clinical tool in andrology. Andrologia. 2001;33(1):43–6.
Article
CAS
PubMed
Google Scholar
Vilagran I, Yeste M, Sancho S, Castillo J, Oliva R, Bonet S. Comparative analysis of boar seminal plasma proteome from different freezability ejaculates and identification of Fibronectin 1 as sperm freezability marker. Andrology. 2015;3(2):345–56.
Article
CAS
PubMed
Google Scholar
Held T, Barakat AZ, Mohamed BA, Paprotta I, Meinhardt A, Engel W, Adham IM. Heat-shock protein HSPA4 is required for progression of spermatogenesis. Reproduction. 2011;142(1):133–44.
Article
CAS
PubMed
Google Scholar
Asquith KL, Baleato RM, McLaughlin EA, Nixon B, Aitken RJ. Tyrosine phosphorylation activates surface chaperones facilitating sperm–zona recognition. J Cell Sci. 2004;117:3645–57.
Article
CAS
PubMed
Google Scholar
Lachance C, Fortier M, Thimon V, Sullivan R, Bailey JL, Leclerc P. Localization of Hsp60 and Grp78 in the human testis, epididymis and mature spermatozoa. Int J Androl. 2010;33(1):33–44.
Article
CAS
PubMed
Google Scholar
Lachance C, Bailey JL, Leclerc P. Expression of Hsp60 and Grp78 in the human endometrium and oviduct, and their effect on sperm functions. Hum Reprod. 2007;22(10):2606–14.
Article
CAS
PubMed
Google Scholar
Govin J, Caron C, Escoffier E, Ferro M, Kuhn L, Rousseaux S, Eddy EM, Garin J, Khochbin S. Post-meiotic shifts in HSPA2/HSP70.2 chaperone activity during mouse spermatogenesis. J Biol Chem. 2006;281(49):37888–92.
Article
CAS
PubMed
Google Scholar
Bromfield E, Aitken RJ, Nixon B. Novel characterization of the HSPA2-stabilizing protein BAG6 in human spermatozoa. Mol Hum Reprod. 2015;21(10):755–69.
Article
CAS
PubMed
Google Scholar
Sasaki T, Macron E, McQuire T, Arai Y, Moens PB, Okada H. Bat3 deficiency accelerates the degradation of Hsp70-2/HspA2 during spermatogenesis. J Cell Biol. 2008;182(3):449.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martínez-Heredia J, de Mateo S, Vidal-Taboada JM, Ballescà JL, Oliva R. Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod. 2008;23(4):783–91.
Article
PubMed
CAS
Google Scholar
Wang TE, Li SH, Minabe S, Anderson AL, Dun MD, Maeda KI, Matsuda F, Chang HW, Nixon B, Tsai PJ. Mouse quiescin sulfhydryl oxidases exhibit distinct epididymal luminal distribution with segment-specific sperm surface associations. Biol Reprod. 2018;99(5):1022–33.
Article
PubMed
Google Scholar
Hagaman JR, Moyer JS, Bachman ES, Sibony M, Magyar PL, Welch JE, Smithies O, Krege JH, O'Brien DA. Angiotensin-converting enzyme and male fertility. Proc Nat Acad United States America. 1998;95(5):2552–7.
Article
CAS
Google Scholar
Ball BA, Gravance CG, Wessel MT, Sabeur K. Activity of angiotensin-converting enzyme (ACE) in reproductive tissues of the stallion and effects of angiotensin II on sperm motility. Theriogenology. 2003;59(3–4):901–14.
Article
CAS
PubMed
Google Scholar
Nie X, Arend LJ. Pkd1 is required for male reproductive tract development. Mech Dev. 2013;130(11–12):567–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nie X, Arend LJ. Novel roles of Pkd2 in male reproductive system development. Differentiation. 2014;87(3–4):161–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vora N, Perrone R, Bianchi DW. Reproductive issues for adults with autosomal dominant polycystic kidney disease. Am J Kidney Dis. 2008;51(2):307–18.
Article
PubMed
Google Scholar
Schrimpf R, Gottschalk M, Metzger J, Martinsson G, Sieme H, Distl O. Screening of whole genome sequences identified high-impact variants for stallion fertility. BMC Genomics. 2016;17:288.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garbers DL. Swimming with sperm. Nature. 2001;413:579–81.
Article
CAS
PubMed
Google Scholar
Jankovicova J, Frolikova M, Sebkova N, Simon M, Cupperova P, Lipcseyova D, Michalkova K, Horovska L, Sedlacek R, Stopka P, et al. Characterization of tetraspanin protein CD81 in mouse spermatozoa and bovine gametes. Reproduction. 2016;152(6):785–93.
Article
CAS
PubMed
Google Scholar
Kierszenbaum AL, Rosselot C, Rivkin E, Tres LL. Role of integrins, tetraspanins, and ADAM proteins during the development of apoptotic bodies by spermatogenic cells. Mol Reprod Dev. 2006;73(7):906–17.
Article
CAS
PubMed
Google Scholar
Tanigawa M, Miyamoto K, Kobayashi S, Sato M, Akutsu H, Okabe M, Mekada E, Sakakibara K, Miyado M, Umezawa A, et al. Possible involvement of CD81 in acrosome reaction of sperm in mice. Mol Reprod Dev. 2008;75(1):150–5.
Article
PubMed
CAS
Google Scholar
Rajamanickam GD, Kastelic JP, Thundathil JC. Na/K-ATPase regulates bovine sperm capacitation through raft- and non-raft-mediated signaling mechanisms. Mol Reprod Dev. 2017;84(11):1168–82.
Article
CAS
PubMed
Google Scholar
Newton LD, Krishnakumar S, Menon AG, Kastelic JP, van der Hoorn FA, Thundathil JC. Na+/K+ATPase regulates sperm capacitation through aMechanism involving kinases and redistribution of ItsTestis-specific isoform. Mol Reprod Dev. 2010;77(2):136–48.
CAS
PubMed
PubMed Central
Google Scholar
Kocak-Toker N, Aktan G, Aykac-Toker G. The role of Na,K-ATPase in human sperm motility. Int J Androl. 2002;25(3):180–5.
Article
CAS
PubMed
Google Scholar
Jimenez T, Sanchez G, McDermott JP, Nguyen A-N, Kumar TR, Blanco G. Increased Expression of the Na,K-ATPase alpha4 Isoform Enhances Sperm Motility in Transgenic Mice. Biol Reprod. 2011;84(1):153–61.
Article
CAS
PubMed
Google Scholar
Tikhomirov O, Carpenter G. Bax activation and translocation to mitochondria mediate EGF-induced programmed cell death. J Cell Sci. 2005;118:5681–90.
Article
CAS
PubMed
Google Scholar
Billig H, Furuta I, Rivier C, Tapanainen J, Parvinen M, Hsueh AJ. Apoptosis in testis germ cells: developmental changes in gonadotropin dependence and localization to selective tubule stages. Endocrinology. 1995;136(1):5–12.
Article
CAS
PubMed
Google Scholar
Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science. 1995;270(5233):96–9.
Article
CAS
PubMed
Google Scholar
Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J. 1997;16(9):2262–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mostafa T, Rashed L, Nabil N, Amin R. Seminal BAX and BCL2 gene and protein expressions in infertile men with varicocele. Urology. 2014;84(3):590–5.
Article
PubMed
Google Scholar
Shen H-M, Dai J, Chia S-E, Lim A, Ong C-N. Detection of apoptotic alterations in sperm in subfertile patients and their correlations with sperm quality. Hum Reprod. 2002;17(5):1266–73.
Article
PubMed
Google Scholar
Xu H, Shen L, Chen X, Ding Y, He J, Zhu J, Wang Y, Liu X. mTOR/P70S6K promotes spermatogonia proliferation and spermatogenesis in Sprague Dawley rats. Reprod BioMed Online. 2016;32(2):207–17.
Article
CAS
PubMed
Google Scholar
Cao W, Ijiri TW, Huang AP, Gerton GL. Characterization of a novel tektin member, TEKT5, in mouse sperm. J Androl. 2011;32(1):55–69.
Article
CAS
PubMed
Google Scholar
Travis AJ, Kopf GS. The role of cholesterol efflux in regulating the fertilization potential of mammalian spermatozoa. J Clin Invest. 2002;110(6):731–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morales CR, Marat AL, Ni X, Yu Y, Oko R, Smith BT, Argraves WS. ATP-binding cassette transporters ABCA1, ABCA7, and ABCG1 in mouse spermatozoa. Biochem Biophys Res Commun. 2008;376(3):472–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sylvester SR, Griswold MD. The testicular iron shuttle: a "nurse" function of the Sertoli cells. J Androl. 1994;15(5):381–5.
CAS
PubMed
Google Scholar
Miyake K, Ohta T, Nakayama H, Doe N, Terao Y, Oiki E, Nagatomo I, Yamashita Y, Abe T, Nishikura K, et al. CAPS1 RNA editing promotes dense Core vesicle exocytosis. Cell Rep. 2016;17(8):2004–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hay JC, Martin TFJ. Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. J Cell Biol. 1992;119(1):139–51.
Article
CAS
PubMed
Google Scholar
Speidel D, Varoqueaux F, Enk C, Nojiri M, Grishanin RN, Martin TFJ, Hofmann K, Brose N, Reim K. A family of Ca2+−dependent activator proteins for secretion. J Biol Chem. 2003;278:52802–9.
Article
CAS
PubMed
Google Scholar
Sadakata T, Wahida M, Morita N, Furuichi T. Tissue distribution of Ca2+−dependent activator protein for secretion family members CAPS1 and CAPS2 in mice. J Histochem Cytochem. 2007;55(3):301–11.
Article
CAS
PubMed
Google Scholar
Yang Q, Wu P, Wang K, Chen D, Zhou J, Ma J, Li M, Xiao W, Jiang A, Jiang Y, et al. SNPs associated with body weight and backfat thickness in two pig breeds identified by a genome-wide association study. Genomics. 2018;S0888-7543(18):30329.
Google Scholar
Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev. 2004;25(5):747–806.
Article
CAS
PubMed
Google Scholar
van Son M, Tremoen NH, Gaustad AH, Myromslien FD, Våge DI, Stenseth EB, Zeremichael TT, Grindflek E. RNA sequencing reveals candidate genes and polymorphisms related to sperm DNA integrity in testis tissue from boars. BMC Vet Res. 2017;13(1):362.
Article
PubMed
PubMed Central
CAS
Google Scholar
Anfuso CD, Olivieri M, Bellanca S, Salmeri M, Motta C, Scalia M, Satriano C, La Vignera S, Burrello N, Caporarello N, et al. Asthenozoospermia and membrane remodeling enzymes: a new role for phospholipase A2. Andrology. 2015;3(6):1173–82.
Article
CAS
PubMed
Google Scholar
Loza-Huerta A, Vera-Estrella R, Darszon A, Beltrán C. Certain Strongylocentrotus purpuratus sperm mitochondrial proteins co-purify with low density detergent-insoluble membranes and are PKA or PKC-substrates possibly involved in sperm motility regulation. Biochim Biophys Acta. 2013;1830(11):5305–15.
Article
CAS
PubMed
Google Scholar
Froman DP, Feltmann AJ. Fowl (Gallus domesticus) sperm motility depends upon mitochondrial calcium cycling driven by extracellular sodium. Biol Reprod. 2005;72(1):97–101.
Article
CAS
PubMed
Google Scholar
Roldan ERS, Vazquez JM. Bicarbonate/CO2 induces rapid activation of phospholipase A2 and renders boar spermatozoa capable of undergoing acrosomal exocytosis in response to progesterone. FEBS Lett. 1996;396(2–3):227–32.
Article
CAS
PubMed
Google Scholar
Gruschwitz MS, Brezinschek R, Brezinschek H-P. Cytokine levels in the seminal plasma of infertile males. J Androl. 1996;17(2):158–63.
CAS
PubMed
Google Scholar
Perdichizzi A, Nicoletti F, La Vignera S, Barone N, D'Agata R, Vicari E, Calogero AE. Effects of tumor necrosis factor-α on human sperm motility and apoptosis. J Clin Immunol. 2007;27(2):152–62.
Article
CAS
PubMed
Google Scholar
Jiang Q, Wang F, Shi L, Zhao X, Gong M, Liu W, Song C, Li Q, Chen Y, Wu H, et al. C-X-C motif chemokine ligand 10 produced by mouse Sertoli cells in response to mumps virus infection induces male germ cell apoptosis. Cell Death Dis. 2017;8(10):e3146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atikuzzaman M, Sanz L, Pla D, Alvarez-Rodriguez M, Rubér M, Wright D, Calvete JJ, Rodriguez-Martinez H. Selection for higher fertility reflects in the seminal fluid proteome of modern domestic chicken. Comp Biochem Physiol Part D Genomics Proteomics. 2017;21:27–40.
Article
CAS
PubMed
Google Scholar
Lin YC, Richburg JH. Characterization of the role of tumor necrosis factor apoptosis inducing ligand (TRAIL) in spermatogenesis through the evaluation of trail gene-deficient mice. PLoS One. 2014;9(4):e93926.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yeh JR, Zhang X, Nagano MC. Wnt5a is a cell-extrinsic factor that supports self-renewal of mouse spermatogonial stem cells. J Cell Sci. 2011;124(Pt 14):2357–66.
Article
CAS
PubMed
Google Scholar
Amann RP, Waberski D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology. 2014;81(1):5–7.
Article
PubMed
Google Scholar
Bompart D, Vázquez RF, Gómez R, Valverde A, Roldán ERS, García-Molina A, Soler C. Combined effects of type and depth of counting chamber, and rate of image frame capture, on bull sperm motility and kinematics. Anim Reprod Sci. 2019;209:106169.
Article
PubMed
Google Scholar
Waterhouse KE, De Angelis PM, Haugan T, Paulenz H, Hofmo PO, Farstad W. Effects of in vitro storage time and semen-extender on membrane quality of boar sperm assessed by flow cytometry. Theriogenology. 2004;62:1638–51.
Article
CAS
PubMed
Google Scholar
Waterhouse KE, Hofmo PO, Tverdal A, Miller RR. Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm. Reproduction. 2006;131:887–94.
Article
CAS
PubMed
Google Scholar
Saravia F, Núñez-Martìnez I, Morán JM, Soler C, Muriel A, Rodríguez-Martínez H, Peña FJ. Differences in boar sperm head shape and dimensions recorded by computer-assisted sperm morphometry are not related to chromatin integrity. Theriogenology. 2007;68(2):196–203.
Article
CAS
PubMed
Google Scholar
Ma F, Wu D, Deng L, Secrest P, Zhao J, Varki N, Lindheim S, Gagneux P. Sialidases on mammalian sperm mediate deciduous sialylation during capacitation. J Biol Chem. 2012;287(45):38073–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang S, Wang X, Li W, Xang X, Li Z, Liu W, Li C, Zhu Z, Wang L, Wang J, et al. Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2017;100(6):854–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imsland F, Feng C, Boije H, Bed'hom B, Fillon V, Dorshorst B, Rubin CJ, Liu R, Gao Y, Gu X, et al. The Rose-comb mutation in chickens constitutes a structural rearrangement causing both altered comb morpholoty and defective sperm motility. PLoS Genet. 2012;8:e1002775.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramírez-Bello J, Jiménez-Morales M. Functional implications of single nucleotide polymorphisms (SNPs) in protein-coding and non-coding RNA genes in multifactorial diseases. Gac Med Mex. 2017;153(2):238–50.
PubMed
Google Scholar
Althouse GC, Levis DG, Diehl J. Semen collection, evaluation, and processing in the boar. West Lafayette, Indiana: Purdue University Cooperative Extension Service; 1998.
Google Scholar
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41:D991–5.
Article
CAS
PubMed
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
Article
CAS
PubMed
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup GPDP. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq - a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Series B. 1995;57(1):289–300.
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Durinck S, Spellman P, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nat Protoc. 2009;4:1184–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Picardtoolkit [http://broadinstitute.github.io/picard/].
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, Cunningham F. The Ensembl variant effect predictor. Genome Biol. 2016;17:122.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Ruden DM, Lu X. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92.
Article
CAS
Google Scholar