Tremblay YDN, Lamarche D, Chever P, et al. Characterization of the ability of coagulase-negative staphylococci isolated from the milk of Canadian farms to form biofilms. J Dairy Sci. 2013;96(1):234.
Article
CAS
PubMed
Google Scholar
Anderson KL, Azizoglu RO. Detection and causes of bovine mastitis with emphasis on Staphylococcus aureus. Encyclopedia of Agriculture & Food Systems; 2014. p. 435–40.
Google Scholar
Frey Y, Rodriguez JP, Thomann A, et al. Genetic characterization of antimicrobial resistance in coagulase-negative staphylococci from bovine mastitis milk. J Dairy Sci. 2013;96(4):2247–57.
Article
CAS
PubMed
Google Scholar
Entorf M, Feßler AT, Kadlec K, et al. Tylosin susceptibility of staphylococci from bovine mastitis. Vet Microbiol. 2014;171(3–4):368–73.
Article
CAS
PubMed
Google Scholar
Tugce O, Aysegul G, Sadik Y, et al. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution. Mol Biol Evol. 2014;31(9):2387.
Article
CAS
Google Scholar
M M, J V, R D, et al. Multiresistance of Staphylococcus xylosus and Staphylococcus equorum from Slovak Bryndza cheese. Folia Microbiol. 2014;59(3):223–7.
Article
CAS
Google Scholar
Lee CR, Lee JH, Park KS, et al. Quantitative proteomic view associated with resistance to clinically important antibiotics in gram-positive bacteria: a systematic review. Front Microbiol. 2015;6:828.
PubMed
PubMed Central
Google Scholar
Blair JM, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42–51.
Article
CAS
PubMed
Google Scholar
Li H, Zhang DF, Lin XM, et al. Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein. FEMS Microbiol Lett. 2015;362(11):fnv074-fnv074.
Halliwell B. Free radicals, antioxidants, and human disease. Curiosity, cause, or consequence? Lancet. 1994;344(8924):721.
Article
CAS
PubMed
Google Scholar
Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013;11(7):443–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jinki Y, Imlay JA, Woojun P. Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species. J Biol Chem. 2010;285(29):22689–95.
Article
CAS
Google Scholar
D'Costa VM, Mcgrann KM, Hughes DW. Sampling the antibiotic resistome. Science. 2006;311(5759):374–7.
Article
CAS
PubMed
Google Scholar
Radhouani H, Pinto L, Poeta P, et al. After genomics, what proteomics tools could help us understand the antimicrobial resistance of Escherichia coli? J Proteome. 2012;75(10):2773–89.
Article
CAS
Google Scholar
Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8(6):423–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muthaiyan A, Silverman JA, Jayaswal RK, et al. Transcriptional profiling reveals that Daptomycin induces the Staphylococcus aureus Cell Wall stress Stimulon and genes responsive to membrane depolarization. Antimicrob Agents Chemother. 2008;52(3):980–90.
Article
CAS
PubMed
Google Scholar
Reyes J, Panesso D, Tran TT, et al. A liaR deletion restores susceptibility to Daptomycin and antimicrobial peptides in multidrug-resistant enterococcus faecalis. J Infect Dis. 2015;211(8):1317.
Article
CAS
PubMed
Google Scholar
Saini V, Mcclure JT, Scholl DT, et al. Herd-level association between antimicrobial use and antimicrobial resistance in bovine mastitis Staphylococcus aureus isolates on Canadian dairy farms. J Dairy Sci. 2012;95(4):1921.
Article
CAS
PubMed
Google Scholar
Todorović D, Velhner M, Grego E, et al. Molecular characterization of multidrug-resistant Escherichia coli isolates from bovine clinical mastitis and pigs in the Vojvodina Province, Serbia. Microb Drug Resist. 2017;mdr.2017.0016
De AJ, Garch FE, Simjee S, et al. Monitoring of antimicrobial susceptibility of udder pathogens recovered from cases of clinical mastitis in dairy cows across Europe: VetPath results. Vet Microbiol. 2018;213:73–81.
Article
CAS
Google Scholar
Descours G, Ginevra C, Jacotin N, et al. Ribosomal Mutations Conferring Macrolide Resistance in Legionella pneumophila. Antimicrob Agents Chemother. 2017;61(3):e02188-16..
Chao TC, Hansmeier N. The current state of microbial proteomics: where we are and where we want to go. Proteomics. 2012;12(4–5):638–50.
Article
CAS
PubMed
Google Scholar
Sun L, Chen H, Lin W, et al. Quantitative proteomic analysis of Edwardsiella tarda in response to oxytetracycline stress in biofilm. J Proteome. 2017;150:141–8.
Article
CAS
Google Scholar
Brötz-Oesterhelt H, Bandow JE, Labischinski H. Bacterial proteomics and its role in antibacterial drug discovery. Mass Spectrom Rev. 2005;24(4):549–65.
Article
PubMed
CAS
Google Scholar
Kaatz GW, Thyagarajan RV, Seo SM. Effect of promoter region mutations and mgrA overexpression on transcription of norA, which encodes a Staphylococcus aureus multidrug efflux transporter. Antimicrob Agents Chemother. 2005;49(1):161–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
F S, R Z, J H, et al. Structural basis for the interaction of antibiotics with the peptidyl transferase Centre in eubacteria. Nature. 2001;413(6858):814–21.
Article
Google Scholar
Hansen JL, Ippolito JA, Ban N, et al. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell. 2002;10(1):117–28.
Article
CAS
PubMed
Google Scholar
Schlünzen F, Harms JM, Franceschi F, et al. Structural basis for the antibiotic activity of Ketolides and Azalides. Structure. 2003;11(3):329–38.
Article
PubMed
Google Scholar
Rita B, Joerg H, Frank S, et al. Structural insight into the antibiotic action of telithromycin against resistant mutants. J Bacteriol. 2003;185(14):4276.
Article
CAS
Google Scholar
Tu D, Blaha G, Moore PB, Steitz TA. Structures of MLS B K antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell. 2005;121(2):257–70.
Article
CAS
PubMed
Google Scholar
Dunkle JA, Liqun X, Mankin AS, Cate JHD. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc Natl Acad Sci U S A. 2010;107(40):17152–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bulkley D, Innis CA, Blaha G, Steitz TA. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc Natl Acad Sci U S A. 2010;107(40):17158–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zohar E, Donna M, Miri K, et al. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Proc Natl Acad Sci U S A. 2015;112(43):5805–14.
Article
CAS
Google Scholar
Lobritz MA, Belenky P, Porter CB, et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci U S A. 2015;112(27):8173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohanski MA, Dwyer DJ, Hayete B, et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130(5):797.
Article
CAS
PubMed
Google Scholar
Kohanski MA, Dwyer DJ, Wierzbowski J, et al. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell. 2008;135(4):679–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng JY, Zhang CY, Zhu F, et al. Ultraviolet light-induced oxidative stress: effects on antioxidant response of Helicoverpa armigera adults. J Insect Physiol. 2009;55(6):588–92.
Article
CAS
PubMed
Google Scholar
Kim YS, Min J, Hongz HN, et al. Analysis of the stress effects of endocrine disrupting chemicals (EDcs) on Escherichia coli. J Microbiol Biotechnol. 2007;17(8):1390.
CAS
PubMed
Google Scholar
Karunakaran U, Park KG. A systematic review of oxidative stress and safety of antioxidants in diabetes: focus on islets and their defense. Diabetes Metab J. 2013;37(2):106.
Article
PubMed
PubMed Central
Google Scholar
Thai VC, Lim TK, Le KP, et al. iTRAQ-based proteome analysis of fluoroquinolone-resistant Staphylococcus aureus. J Glob Antimicrob Resist. 2016.
Thomas VC, Kinkead LC, Janssen A, Schaeffer CR, Woods KM, et al. A dysfunctional tricarboxylic acid cycle enhances fitness of Staphylococcus epidermidis during beta-lactam stress. Mbio. 2013;4(4):01307-14.
Nandakumar M, Nathan C, Rhee KY. Isocitrate lyase mediates broad antibiotic tolerance in mycobacterium tuberculosis. Nat Commun. 2014;5(5):4306.
Article
CAS
PubMed
Google Scholar
Shi Y, Zhai H, Wang X, et al. Ribosomal proteins S13 and L23 promote multidrug resistance in gastric cancer cells by suppressing drug-induced apoptosis. Exp Cell Res. 2004;296(2):337.
Article
CAS
PubMed
Google Scholar
Zorzet A, Pavlov MY, Nilsson AI, et al. Error-prone initiation factor 2 mutations reduce the fitness cost of antibiotic resistance. Mol Microbiol. 2010;75(5):1299–313.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989;264(24):13963–6.
CAS
PubMed
Google Scholar
Perozich J, Nicholas H, et al. Relationships within the aldehyde dehydrogenase extended family. Protein Sci. 1999;8(1):137–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dwyer DJ, Belenky PA, Yang JH, et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci U S A. 2014;111(20):2100–9.
Article
CAS
Google Scholar
Frees D, Chastanet A, Qazi S, et al. Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol. 2004;54(5):1445–62.
Article
CAS
PubMed
Google Scholar
Wool IG. Extraribosomal functions of ribosomal proteins. Trends Biochem Sci. 1996;21(5):164.
Article
CAS
PubMed
Google Scholar
Ganger DR, Hamilton PD, Klos DJ, et al. Differential expression of metallopanstimulin/S27 ribosomal protein in hepatic regeneration and neoplasia. Cancer Detect Prev. 2001;25(3):231–6.
CAS
PubMed
Google Scholar
Grillari J, Hohenwarter O, Grabherr RM, et al. Subtractive hybridization of mRNA from early passage and senescent endothelial cells. Exp Gerontol. 2000;35(2):187–97.
Article
CAS
PubMed
Google Scholar
Loging W, Reisman D. Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53. Cancer Epidemiol Biomark Prev. 1999;8(11):1011–6.
CAS
Google Scholar
Naora H, Takai I, Adachi M, et al. Altered cellular responses by varying expression of a ribosomal protein gene: sequential coordination of enhancement and suppression of ribosomal protein S3a gene expression induces apoptosis. J Cell Biol. 1998;141(3):741–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vogelstein B, Kinzler KW, Zhang L, et al. Gene expression profiles in normal and cancer cells. Science. 1997;276(5316):1268-1272.
Article
CAS
PubMed
Google Scholar
Neumann F, Krawinkel U. Constitutive expression of human ribosomal protein L7 arrests the cell cycle in G1 and induces apoptosis in Jurkat T-lymphoma cells. Exp Cell Res. 1997;230(2):252.
Article
CAS
PubMed
Google Scholar
Chan YL, Diaz JJ, Denoroy L, et al. The primary structure of rat ribosomal protein L10: relationship to a Jun-binding protein and to a putative Wilms' tumor suppressor. Biochem Biophys Res Commun. 1996;225(3):952.
Article
CAS
PubMed
Google Scholar
Ross DD. Novel mechanisms of drug resistance in leukemia. Leukemia. 2000;14(3):467.
Article
CAS
PubMed
Google Scholar
Apfel CM, Locher H, Evers S, et al. Peptide deformylase as an antibacterial drug target: target validation and resistance development. Antimicrob Agents Chemother. 2001;45(4):1058–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steiner-Mosonyi M, Creuzenet C, Keates RA, et al. The Pseudomonas aeruginosa initiation factor IF-2 is responsible for formylation-independent protein initiation in P. aeruginosa. J Biol Chem. 2004;279(50):52262–9.
Article
CAS
PubMed
Google Scholar
Walsh C. Where will new antibiotics come from? Nat Rev Microbiol. 2003;1(1):65–70.
Article
CAS
PubMed
Google Scholar
Zou L, Lu J, Wang J, et al. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant gram-negative bacterial infections. Embo Mol Med. 2017;9(8):1165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lillig CH, Holmgren A. Thioredoxin and related molecules--from biology to health and disease. Antioxid Redox Signal. 2006;9(1):25.
Article
Google Scholar
Martin JL. Thioredoxin —a fold for all reasons. Structure. 1995;3(3):245–50.
Article
CAS
PubMed
Google Scholar
Wilkinson LJ, White RJ, Chipman JK. Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care. 2011;20(11):543–9.
Article
CAS
PubMed
Google Scholar
Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66(8):75–87.
Article
CAS
PubMed
Google Scholar
And DR, Beckwith J. Roles of thiol-redox pathways in Bacteria. Annu Rev Microbiol. 2001;55(1):21–48.
Article
Google Scholar
Farr SB, D'Ari R, Touati D. Oxygen-Dependent Mutagenesis in Escherichia coli Lacking Superoxide Dismutase. Proc Natl Acad Sci U S A. 1986;83(21):8268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Touati D, Jacques M, Tardat B, et al. Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol. 1995;177(9):2305–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keyer K, Imlay JA. Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U S A. 1996;93(24):13635–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dwyer DJ, Collins JJ, Walker GC. Unraveling the physiological complexities of antibiotic lethality. Annu Rev Pharmacol Toxicol. 2015;55(1):313–32.
Article
CAS
PubMed
Google Scholar
Foti JJ, Devadoss B, Winkler JA, et al. Oxidation of the guanine nucleotide Pool underlies cell death by bactericidal antibiotics. Science. 2012;336(6079):315–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hilton J. Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res. 1984;44(11):5156–60.
CAS
PubMed
Google Scholar
Sun QL, Sha HF, Yang XH, et al. Comparative proteomic analysis of paclitaxel sensitive A549 lung adenocarcinoma cell line and its resistant counterpart A549-Taxol. J Cancer Res Clin Oncol. 2011;137(3):521–32.
Article
CAS
PubMed
Google Scholar
Tomonori T, Koji M, Kenzo S, et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res. 2009;15(12):4234–41.
Article
CAS
Google Scholar
Croker AK, Allan AL. Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells. Breast Cancer Res Treat. 2012;133(1):75–87.
Article
CAS
PubMed
Google Scholar
RadosAw J, Karolina W, Maciej Z. The role of aldehyde dehydrogenase (ALDH) in cancer drug resistance. Biomed Pharmacother. 2013;67(7):669–80.
Article
CAS
Google Scholar
Vasiliou V, Thompson DC, Smith C, et al. Aldehyde dehydrogenases: from eye crystallins to metabolic disease and cancer stem cells. Chem Biol Interact. 2013;202(1–3):2–10.
Article
CAS
PubMed
Google Scholar
Imlay JA. Diagnosing oxidative stress in bacteria: not as easy as you might think. Curr Opin Microbiol. 2015;24:124–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Imlay JA. Cell death from antibiotics without the involvement of reactive oxygen species. Science. 2013;339(6124):1210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ezraty B, Vergnes A, Banzhaf M, et al. Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science. 2013;340(6140):1583.
Article
CAS
PubMed
Google Scholar
Xu CG, Yang YB, Zhou YH, et al. Comparative proteomic analysis provides insight into the key proteins as possible targets involved in aspirin inhibiting biofilm formation of Staphylococcus xylosus. Front Pharmacol. 2017;8:543.
Article
PubMed
PubMed Central
CAS
Google Scholar
Z S, C Z, W L, et al. Microarray expression profile analysis of long non-coding RNAs in umbilical cord plasma reveals their potential role in gestational diabetes-induced macrosomia. Cell Physiol Biochem. 2015;36(2):542–54.
Article
CAS
Google Scholar
Kim S, Lieberman TD, Kishony R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc Natl Acad Sci U S A. 2014;111(40):14494–9.
Article
CAS
PubMed
PubMed Central
Google Scholar