Ytrehus B, Carlson CS, Ekman S. Etiology and pathogenesis of osteochondrosis. Vet Pathol. 2007;44:429–48.
Article
CAS
PubMed
Google Scholar
Reiland S. Pathology of so-called leg weakness in the pig. Acta Radiol Suppl. 1978;358:23–44.
CAS
PubMed
Google Scholar
Nakano T, Brennan JJ, Aherne FX. Leg weakness and osteochondrosis in swine: a review. Can J Anim Sci. 1987;67:883–901.
Article
Google Scholar
Olsson SE, Reiland S. The nature of osteochondrosis in animals. Summary and conclusions with comparative aspects on osteochondritis dissecans in man. Acta Radiol Suppl. 1978;358:299–306.
CAS
PubMed
Google Scholar
Grøndalen T. Osteochondrosis and arthrosis in pigs. I. Incidence in animals up to 120 kg live weight. Acta vet. Scandinavica. 1974;15:1–25.
Google Scholar
Crenshaw TD. Arthritis or OCD - identification and prevention. Adv Pork Prod. 2006;17:199–208.
Google Scholar
Etterlin PE, Morrison DA, Österberg J, Ytrehus B, Heldmer E, Ekman S. Osteochondrosis, but not lameness, is more frequent among free-range pigs than confined herd-mates. Acta Vet Scand BioMed Central. 2015;57:63.
Article
Google Scholar
Pool R. Difficulties in definition of equine osteochondrosis; differentiation of developmental and acquired lesions. Equine Vet J. 1993;25:5–12.
Article
Google Scholar
Dingemanse W, Jonkers I, Vander SJ, Van BH, Gielen I. Subchondral bone density distribution of the talus in clinically normal Labrador retrievers. BMC Vet Res BMC Veterinary Research. 2016;12:56.
Article
CAS
PubMed
Google Scholar
Lecocq M, Girard CA, Fogarty U, Beauchamp G, Richard H, Laverty S. Cartilage matrix changes in the developing epiphysis: early events on the pathway to equine osteochondrosis? Equine Vet J. 2008;40:442–54.
Article
CAS
PubMed
Google Scholar
Martel G, Couture CA, Gilbert G, Bancelin S, Richard H, Moser T, et al. Femoral epiphyseal cartilage matrix changes at predilection sites of equine osteochondrosis: quantitative MRI, second-harmonic microscopy, and histological findings. J Orthop Res. 2016;34:1743–52.
Article
CAS
PubMed
Google Scholar
Stern S, Lundeheim N, Johansson K, Andersson K. Osteochondrosis and leg weakness in pigs selected for lean tissue growth rate. Livest Prod Sci. 1995;44:45–52.
Article
Google Scholar
Aasmundstad T, Kongsro J, Wetten M, Dolvik NI, Vangen O. Osteochondrosis in pigs diagnosed with computed tomography: heritabilities and genetic correlations to weight gain in specific age intervals. Animal. 2013;7:1576–82.
Article
CAS
PubMed
Google Scholar
Olstad K, Ekman S, Carlson CS. An update on the pathogenesis of Osteochondrosis. Vet Pathol. 2015;52:785–802.
Article
CAS
PubMed
Google Scholar
Woodard JC, Becker HN, Poulos PW. Articular cartilage blood vessels in swine osteochondrosis. Vet Pathol. 1987;24:118–23.
Article
CAS
PubMed
Google Scholar
Carlson CS, Hilley HD, Meuten DJ. Degeneration of Cartilage Canal vessels associated with lesions of Osteochondrosis in swine. Vet Pathol. 1989;26:47–54.
Article
CAS
PubMed
Google Scholar
Ytrehus B, Ekman S, Carlson C, Teige J, Reinholt FP. Focal changes in blood supply during normal epiphyseal growth are central in the pathogenesis of osteochondrosis in pigs. Bone. 2004;35:1294–306.
Article
PubMed
Google Scholar
Carlson CS, Meuten DJ, Richardson DC. Ischemic necrosis of cartilage in spontaneous and experimental lesions of osteochondrosis. J Orthop Res. 1991;9:317–29.
Article
CAS
PubMed
Google Scholar
Ytrehus B, Andreas Haga H, Mellum CN, Mathisen L, Carlson CS, Ekman S, et al. Experimental ischemia of porcine growth cartilage produces lesions of osteochondrosis. J Orthop Res. 2004;22:1201–9.
Article
CAS
PubMed
Google Scholar
Olstad K, Hendrickson EHS, Carlson CS, Ekman S, Dolvik NI. Transection of vessels in epiphyseal cartilage canals leads to osteochondrosis and osteochondrosis dissecans in the femoro-patellar joint of foals; a potential model of juvenile osteochondritis dissecans. Osteoarthr Cartil. 2013;21:730–8.
Article
CAS
PubMed
Google Scholar
Tóth F, Nissi MJ, Wang L, Ellermann JM, Carlson CS. Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis. Osteoarthr Cartil. 2015;23:300–7.
Article
PubMed
Google Scholar
Ytrehus B, Carlson CS, Lundeheim N, Mathisen L, Reinholt FP, Teige J, et al. Vascularisation and osteochondrosis of the epiphyseal growth cartilage of the distal femur in pigs--development with age, growth rate, weight and joint shape. Bone. 2004;34:454–65.
Article
CAS
PubMed
Google Scholar
Levene C. The patterns of cartilage canals. J Anat, Lond. 1964;98:515–38.
CAS
PubMed
PubMed Central
Google Scholar
Wilsman NJ, Van Sickle DC. Cartilage canals, their morphology and distribution. Anat Rec. 1972;173:79–93.
Article
CAS
PubMed
Google Scholar
Lutfi AM. Study of cell multiplication in the cartilaginous upper end of the tibia of the domestic fowl by tritiated thymidine autoradiography. Acta Anat (Basel). 1970;76:454–63.
Article
CAS
Google Scholar
Blumer MJF, Longato S, Richter E, Pérez MT, Konakci KZ, Fritsch H. The role of cartilage canals in endochondral and perichondral bone formation: are there similarities between these two processes? J Anat. 2005;206:359–72.
Article
PubMed
PubMed Central
Google Scholar
Rivas R, Shapiro F. Structural stages in the development of the long bones and epiphyses. J Bone Jt Surg. 2002;84:85–100.
Article
Google Scholar
Haines RW. The pseudoepiphysis of the first metacarpal of man. J Anat. 1974;117:145–58.
CAS
PubMed
PubMed Central
Google Scholar
Visco DM, Hill MA, Van Sickle DC, Kincaid SA. Cartilage canals and lesions typical of osteochondrosis in growth cartilages from the distal part of the humerus of newborn pigs. Vet Rec. 1991;128:221–8.
Article
CAS
PubMed
Google Scholar
Olstad K, Kongsro J, Grindflek E, Dolvik N. Consequences of the natural course of articular osteochondrosis in pigs for the suitability of computed tomography as a screening tool. BMC Vet Res. 2014;10:212.
Article
PubMed
PubMed Central
Google Scholar
Olstad K, Cnudde V, Masschaele B, Thomassen R, Dolvik NI. Micro-computed tomography of early lesions of osteochondrosis in the tarsus of foals. Bone. 2008;43:574–83.
Article
PubMed
Google Scholar
Hellings IR, Ekman S, Hultenby K, Dolvik NI, Olstad K. Discontinuities in the endothelium of epiphyseal cartilage canals and relevance to joint disease in foals. J Anat. 2016;228:162–75.
Article
CAS
PubMed
Google Scholar
Montes G. Structural biology of the fibres of the collagenous and elastic systems. Cell Biol Int. 1996;20:15–27.
Article
CAS
PubMed
Google Scholar
Yeh AT, Hammer-Wilson MJ, Van Sickle DC, Benton HP, Zoumi A, Tromberg BJ, et al. Nonlinear optical microscopy of articular cartilage. Osteoarthr Cartil. 2005;13:345–52.
Article
PubMed
Google Scholar
Mansfield JC, Peter WC. A multi-modal multiphoton investigation of microstructure in the deep zone and calcified cartilage. J Anat. 2012;220:405–16.
Article
PubMed
PubMed Central
Google Scholar
Wang L, Nissi MJ, Toth F, Johnson CP, Garwood M, Carlson CS, et al. Quantitative susceptibility mapping detects abnormalities in cartilage canals in a goat model of preclinical osteochondritis dissecans. Magn Reson Med. 2017;77:1276–83.
Article
CAS
PubMed
Google Scholar
Lilledahl MB, Pierce DM, Ricken T, Holzapfel GA, Davies CDL. Structural analysis of articular cartilage using multiphoton microscopy: input for biomechanical modeling. IEEE Trans Med Imaging. 2011;30:1635–48.
Article
PubMed
Google Scholar
Finnøy A, Olstad K, Lilledahl MB. Second harmonic generation imaging reveals a distinct organization of collagen fibrils in locations associated with cartilage growth. Connect Tissue Res. 2016;57:374–87.
Article
PubMed
Google Scholar
Temple MM, Bae WC, Chen MQ, Lotz M, Amiel D, Coutts RD, et al. Age- and site-associated biomechanical weakening of human articular cartilage of the femoral condyle. Osteoarthr Cartil. 2007;15:1042–52.
Article
CAS
PubMed
Google Scholar
Campagnola PJ, Millard AC, Terasaki M, Hoppe PE, Malone CJ, Mohler WA. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys J. 2002;82:493–508.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown CP, Houle M-A, Popov K, Nicklaus M, Couture C-A, Laliberté M, et al. Imaging and modeling collagen architecture from the nano to micro scale. Biomed Opt Express. 2013;5:233–43.
Article
PubMed
PubMed Central
Google Scholar
Bancelin S, Aimé C, Gusachenko I, Kowalczuk L, Latour G, Coradin T, et al. Determination of collagen fibril size via absolute measurements of second-harmonic generation signals. Nat Commun. 2014;5:4920.
Article
CAS
PubMed
Google Scholar
Cox G, Kable E, Jones A, Fraser I, Manconi F, Gorrell MD. 3-dimensional imaging of collagen using second harmonic generation. J Struct Biol. 2003;141:53–62.
Article
CAS
PubMed
Google Scholar
Olstad K, Kongsro J, Grindflek E, Dolvik NI. Ossification defects detected in CT scans represent early osteochondrosis in the distal femur of piglets. J Orthop Res. 2014;32:1014–23.
Article
PubMed
Google Scholar
Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc. 2012;7:654–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olstad K, Ytrehus B, Ekman S, Carlson CS, Dolvik NI. Early Lesions of Osteochondrosis in the Distal Tibia of Foals. J Orthop Res. 2007;25:1094–105.
Article
PubMed
Google Scholar
Deniset-Besseau A, Duboisset J, Benichou E, Hache F, Brevet P-F, Schanne-Klein M-C. Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin. J Phys Chem B. 2009;113:13437–45.
Article
CAS
PubMed
Google Scholar
Stoller P, Celliers PM, Reiser KM, Rubenchik AM. Quantitative second-harmonic generation microscopy in collagen. Appl Opt. 2003;42:5209–19.
Article
PubMed
Google Scholar
Houle M-A, Couture C-A, Bancelin S, Van der Kolk J, Auger E, Brown C, et al. Analysis of forward and backward second harmonic generation images to probe the nanoscale structure of collagen within bone and cartilage. J Biophotonics. 2015;8:993–1001.
Article
CAS
PubMed
Google Scholar
Chaudhary R, Campbell KR, Tilbury KB, Vanderby R, Block WF, Kijowski R, et al. Articular cartilage zonal differentiation via 3D second-harmonic generation imaging microscopy. Connect Tissue Res. 2015;56:76–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blumer MJF, Fritsch H, Pfaller K, Brenner E. Cartilage canals in the chicken embryo: ultrastructure and function. Anat Embryol (Berl). 2004;207:453–62.
Article
CAS
Google Scholar
Blumer MJF, Longato S, Schwarzer C, Fritsch H. Bone development in the femoral epiphysis of mice: the role of cartilage canals and the fate of resting chondrocytes. Dev Dyn. 2007;236:2077–88.
Article
PubMed
Google Scholar
Stockwell RA. The ultrastructure of cartilage canals and the surrounding cartilage in the sheep fetus. J Anat. 1971;109:397–410.
CAS
PubMed
PubMed Central
Google Scholar
Claassen H, Kirsch T, Simons G. Cartilage canals in human thyroid cartilage characterized by immunolocalization of collagen types I, II, pro-III, IV and X. Anat Embryol (Berl). 1996;194:147–53.
Article
CAS
Google Scholar
Laverty S, Girard C. Pathogenesis of epiphyseal osteochondrosis. Vet J. 2013;197:3–12.
Article
CAS
PubMed
Google Scholar
Hurrell DJ. The Vascularisation of cartilage. J Anat. 1934;69:47–61.
CAS
PubMed
PubMed Central
Google Scholar
Visco DM, Hill MA, Van Sickle DC, Kincaid SA. The development of centres of ossification of bones forming elbow joints in young swine. J Anat. 1990;171:25–39.
CAS
PubMed
PubMed Central
Google Scholar
Latker CH, Kuwabara T. Regression of the tunica vasculosa lentis in the postnatal rat. Investig Ophthalmol Vis Sci. 1981;21:689–99.
CAS
Google Scholar
Mitchell CA, Risau W, Drexler HCA, Risau W, Drexler HCA, Risau W, et al. Regression of vessels in the tunica Vasculosa Lentis is initiated by coordinated endothelial apoptosis: a role for vascular endothelial growth factor as a survival factor for endothelium. Dev Dyn. 1998;213:322–33.
Article
CAS
PubMed
Google Scholar
Roach HI, Baker JE, Clarke NM. Initiation of the bony epiphysis in long bones: chronology of interactions between the vascular system and the chondrocytes. J Bone Miner Res. 1998;13:950–61.
Article
CAS
PubMed
Google Scholar
Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M. 4D flow imaging with MRI. Cardiovasc Diagn Ther. 2014;4:173–92.
PubMed
PubMed Central
Google Scholar
Tóth F, Nissi MJ, Zhang J, Benson M, Schmitter S, Ellermann JM, et al. Histological confirmation and biological significance of cartilage canals demonstrated using high field MRI in swine at predilection sites of osteochondrosis. J Orthop Res. 2013;31:2006–12.
Article
PubMed
PubMed Central
Google Scholar
Gray DJ, Gardner E. Prenatal development of the human knee and superior tibiofibular joints. Am J Anat. 1950;86:235–87.
Article
CAS
PubMed
Google Scholar
Olstad K, Ytrehus B, Ekman S, Carlson CS, Dolvik NI. Epiphyseal cartilage canal blood supply to the metatarsophalangeal joint of foals. Equine Vet J. 2009;41:865–71.
Article
CAS
PubMed
Google Scholar
Hendrickson E. Osteochondrosis and osteochondral fragments in horses; a study into etiology. Oslo: Norwegian University of Life Sciences; 2014.
Google Scholar
Ishikawa M, Adachi N, Yoshikawa M, Nakamae A, Nakasa T, Ikuta Y, et al. Unique anatomic feature of the posterior Cruciate ligament in knees associated with Osteochondritis Dissecans. Orthop J Sport Med. 2016;4:1–7.
Article
Google Scholar