Plaizier JC, Krause DO, Gozho GN, McBride BW. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet J. 2008;176:21–31.
Article
CAS
PubMed
Google Scholar
Kleen JL, Hooijer GA, Rehage J, Noordhuizen JP. Subacute ruminal acidosis (SARA): a review. J Vet Med A Physiol Pathol Clin Med. 2003;50:406–14.
Article
CAS
PubMed
Google Scholar
Khafipour E, Krause DO, Plaizier JC. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J Dairy Sci. 2009;92:1060–70.
Article
CAS
PubMed
Google Scholar
Gozho GN, Plaizier JC, Krause DO, Kennedy AD, Wittenberg KM. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J Dairy Sci. 2005;88:1399–403.
Article
CAS
PubMed
Google Scholar
Emmanuel DGV, Dunn SM, Ametaj BN. Feeding high proportions of barley grain stimulates an inflammatory response in dairy cows. J Dairy Sci. 2008;91:606–14.
Article
CAS
PubMed
Google Scholar
Ametaj BN, Koenig KM, Dunn SM, Yang WZ, Zebeli Q, Beauchemin KA. Backgrounding and finishing diets are associated with inflammatory responses in feedlot steers. J Anim Sci. 2009;87:1314–20.
Article
CAS
PubMed
Google Scholar
Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol. 2003;3:169–76.
Article
CAS
PubMed
Google Scholar
Heine H, Rietschel ET, Ulmer AJ. The biology of endotoxin. Mol Biotechnol. 2001;19:279–96.
Article
CAS
PubMed
Google Scholar
Swanson K, Gorodetsky S, Good L, Davis S, Musgrave D, Stelwagen K, et al. Expression of a beta-defensin mRNA, lingual antimicrobial peptide, in bovine mammary epithelial tissue is induced by mastitis. Infect Immun. 2004;72:7311–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schonwetter BS, Stolzenberg ED, Zasloff MA. Epithelial antibiotics induced at sites of inflammation. Science. 1995;267:1645–8.
Article
CAS
PubMed
Google Scholar
Kagan BL, Ganz T, Lehrer RI. Defensins: a family of antimicrobial and cytotoxic peptides. Toxicology. 1994;87:131–49.
Article
CAS
PubMed
Google Scholar
Diamond G, Zasloff M, Eck H, Brasseur M, Maloy WL, Bevins CL. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci U S A. 1991;88:3952–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tarver AP, Clark DP, Diamond G, Russell JP, Erdjument-Bromage H, Tempst P, et al. Enteric beta-defensin: molecular cloning and characterization of a gene with inducible intestinal epithelial cell expression associated with Cryptosporidium parvum infection. Infect Immunity. 1998;66:1045–56.
CAS
Google Scholar
Cormican P, Meade KG, Cahalane S, Narciandi F, Chapwanya A, Lloyd AT, et al. Evolution, expression and effectiveness in a cluster of novel bovine beta-defensins. Immunogenetics. 2008;60:147–56.
Article
CAS
PubMed
Google Scholar
Goldammer T, Zerbe H, Molenaar A, Schuberth HJ, Brunner RM, Kata SR, et al. Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clin Diagn Lab Immunol. 2004;11:174–85.
CAS
PubMed
PubMed Central
Google Scholar
Roosen S, Exner K, Paul S, Schroder JM, Kalm E, Looft C. Bovine beta-defensins: identification and characterization of novel bovine beta-defensin genes and their expression in mammary gland tissue. Mamm Genome. 2004;15:834–42.
Article
CAS
PubMed
Google Scholar
Isobe N, Hosoda K, Yoshimura Y. Immunolocalization of lingual antimicrobial peptide (LAP) in the bovine mammary gland. Anim Sci J. 2009;80:446–50.
Article
CAS
PubMed
Google Scholar
Singh K, Davis SR, Dobson JM, Molenaar AJ, Wheeler TT, Prosser CG, et al. cDNA microarray analysis reveals that antioxidant and immune genes are upregulated during involution of the bovine mammary gland. J Dairy Sci. 2008;91:2236–46.
Article
CAS
PubMed
Google Scholar
Petzl W, Zerbe H, Gunther J, Yang W, Seyfert HM, Nurnberg G, et al. Escherichia coli, but not Staphylococcus aureus triggers an early increased expression of factors contributing to the innate immune defense in the udder of the cow. Vet Res. 2008;39:18.
Article
PubMed
Google Scholar
Swanson KM, Stelwagen K, Dobson J, Henderson HV, Davis SR, Farr VC, et al. Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J Dairy Sci. 2009;92:117–29.
Article
CAS
PubMed
Google Scholar
Isobe N, Nakamura J, Nakano H, Yoshimura Y. Existence of functional lingual antimicrobial peptide in bovine milk. J Dairy Sci. 2009;92:2691–5.
Article
CAS
PubMed
Google Scholar
Isobe N, Morimoto K, Nakamura J, Yamasaki A, Yoshimura Y. Intramammary challenge of lipopolysaccharide stimulates secretion of lingual antimicrobial peptide into milk of dairy cows. J Dairy Sci. 2009;92:6046–51.
Article
CAS
PubMed
Google Scholar
Gunther J, Liu S, Esch K, Schuberth HJ, Seyfert HM. Stimulated expression of TNF-alpha and IL-8, but not of lingual antimicrobial peptide reflects the concentration of pathogens contacting bovine mammary epithelial cells. Vet Immunol Immunop. 2010;135:152–7.
Article
Google Scholar
Liu S, Shi X, Bauer I, Gunther J, Seyfert HM. Lingual antimicrobial peptide and IL-8 expression are oppositely regulated by the antagonistic effects of NF-kappaB p65 and C/EBPbeta in mammary epithelial cells. Mol Immunol. 2011;48:895–908.
Article
CAS
PubMed
Google Scholar
Stolzenberg ED, Anderson GM, Ackermann MR, Whitlock RH, Zasloff M. Epithelial antibiotic induced in states of disease. Proc Natl Acad Sci U S A. 1997;94:8686–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isobe N, Sugino T, Taniguchi K, Moriya N, Hosoda K, Yoshimura Y. Differential localization of lingual antimicrobial peptide in the digestive tract mucosal epithelium of calves. Vet Immunol Immunop. 2011;142:87–94.
Article
CAS
Google Scholar
Liu JH, Xu TT, Zhu WY, Mao SY. A high-grain diet alters the omasal epithelial structure and expression of tight junction proteins in a goat model. Vet J. 2014;201:95–100.
Article
CAS
PubMed
Google Scholar
Zhou J, Dong G, Ao C, Zhang S, Qiu M, Wang X, et al. Feeding a high-concentrate corn straw diet increased the release of endotoxin in the rumen and pro-inflammatory cytokines in the mammary gland of dairy cows. BMC Vet Res. 2014;10:172.
Article
PubMed
PubMed Central
Google Scholar
Ershun Z, Yunhe F, Zhengkai W, Yongguo C, Naisheng Z, Zhengtao Y. Cepharanthine attenuates lipopolysaccharide-induced mice mastitis by suppressing the NF-kB signaling pathway. Inflammation. 2014;37:331–7.
Article
PubMed
Google Scholar
Morgante M, Stelletta C, Berzaghi P, Gianesella M, Andrighetto I. Subacute rumen acidosis in lactating cows: an investigation in intensive Italian dairy herds. J Anim Physiol An N. 2007;91:226–34.
Article
CAS
Google Scholar
De Nardi R, Marchesini G, Stefani AL, Barberio A, Andrighetto I, Segato S. Effect of feeding fine maize particles on the reticular pH, milk yield and composition of dairy cows. J Anim Physiol An N. 2014;98:504–10.
Article
Google Scholar
Beauchemin KA, Yang WZ. Effects of physically effective fiber on intake, chewing activity, and ruminal acidosis for dairy cows fed diets based on corn silage. J Dairy Sci. 2005;88:2117–29.
Article
CAS
PubMed
Google Scholar
Xu T, Tao H, Chang G, Zhang K, Xu L, Shen X. Lipopolysaccharide derived from the rumen down-regulates stearoyl-CoA desaturase 1 expression and alters fatty acid composition in the liver of dairy cows fed a high-concentrate diet. BMC Vet Res. 2015;11:52.
Article
PubMed
PubMed Central
Google Scholar
Nussbaum C, Klinke A, Adam M, Baldus S, Sperandio M. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Sign. 2013;18:692–713.
Article
CAS
Google Scholar
Kankofer M, Wiercinski J, Zerbe H. Activity of Placental β-N-acetyl-glucosaminidase in cows with and without retained fetal membranes. Reprod Domest Anim. 2000;35(3-4):97–100.
Article
CAS
Google Scholar
Notebaert S, Demon D, Vanden Berghe T, Vandenabeele P, Meyer E. Inflammatory mediators in Escherichia coli-induced mastitis in mice. Comp Immunol Microbiol Infect Dis. 2008;31:551–65.
Article
PubMed
Google Scholar
Strandberg Y, Gray C, Vuocolo T, Donaldson L, Broadway M, Tellam R. Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine. 2005;31:72–86.
Article
CAS
PubMed
Google Scholar
Rainard P, Riollet C. Innate immunity of the bovine mammary gland. Vet Res. 2006;37:369–400.
Article
CAS
PubMed
Google Scholar
Kawai K, Akamatsu H, Obayashi T, Nagahata H, Higuchi H, Iwano H, et al. Relationship between concentration of lingual antimicrobial peptide and somatic cell count in milk of dairy cows. Vet Immunol Immunop. 2013;153:298–301.
Article
CAS
Google Scholar
Isobe N, Shibata A, Kubota H, Yoshimura Y. Lingual antimicrobial peptide and lactoferrin concentrations and lactoperoxidase activity in bovine colostrum are associated with subsequent somatic cell count. Anim Sci J. 2013;84:751–6.
Article
CAS
PubMed
Google Scholar
Kawai K, Korematsu K, Akiyama K, Okita M, Yoshimura Y, Isobe N. Dynamics of lingual antimicrobial peptide, lactoferrin concentrations and lactoperoxidase activity in the milk of cows treated for clinical mastitis. An Sci J. 2015;86:153–8.
Article
CAS
Google Scholar
Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.
Article
CAS
PubMed
Google Scholar
Scheidereit C. IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene. 2006;25:6685–705.
Article
CAS
PubMed
Google Scholar
Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18:6853–66.
Article
CAS
PubMed
Google Scholar