You J, Willcox MD, Madigan MC, Wasinger V, Schiller B, Walsh BJ, et al. Tear fluid protein biomarkers. In: Advances in clinical chemistry, vol. 62: Elsevier; 2013. p. 151–96.
Google Scholar
Guidoboni G, Harris A, Sacco R, editors. Ocular fluid dynamics: anatomy, physiology, imaging techniques, and mathematical modeling: Springer Nature; 2019.
Google Scholar
Zhou L, Beuerman RW. Tear analysis in ocular surface diseases. Prog Retin Eye Res. 2012;31(6):527–50.
Article
CAS
Google Scholar
Pflugfelder SC, Stern ME. Biological functions of tear film. Exp Eye Res. 2020;197:108115.
Article
CAS
Google Scholar
Dilly PN. Structure and function of the tear film. Lacrimal gland, tear film, and dry eye syndromes; 1994. p. 239–47.
Book
Google Scholar
Sebbag L, McDowell EM, Hepner PM, Mochel JP. Effect of tear collection on lacrimal total protein content in dogs and cats: a comparison between Schirmer strips and ophthalmic sponges. BMC Vet Res. 2018;14(1):1–7.
Article
Google Scholar
Winiarczyk M, Winiarczyk D, Banach T, Adaszek L, Madany J, Mackiewicz J, et al. Dog tear film proteome in-depth analysis. PLoS One. 2015;10(12):e0144242.
Article
Google Scholar
Zhou L, Beuerman RW, Chan CM, Zhao SZ, Li XR, Yang H, et al. Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J Proteome Res. 2009;8(11):4889–905.
Article
CAS
Google Scholar
Pieragostino D, Agnifili L, Fasanella V, D'Aguanno S, Mastropasqua R, Di Ilio C, et al. Shotgun proteomics reveals specific modulated protein patterns in tears of patients with primary open angle glaucoma naive to therapy. Mol Biosyst. 2013;9(6):1108–16.
Article
CAS
Google Scholar
Miller I, Schlosser S, Palazzolo L, Veronesi MC, Eberini I, Gianazza E. Some more about dogs: proteomics of neglected biological fluids. J Proteomics. 2020;218:103724.
Article
CAS
Google Scholar
Disney JL. Tear lacritin concentrations in canine keratoconjunctivitis sicca (Doctoral dissertation: Virginia Tech.
de Freitas Campos C, Cole N, Van Dyk D, Walsh BJ, Diakos P, Almeida D, et al. Proteomic analysis of dog tears for potential cancer markers. Res Vet Sci. 2008;85(2):349–52.
Article
Google Scholar
Green-Church KB, Nichols KK, Kleinholz NM, Zhang L, Nichols JJ. Investigation of the human tear film proteome using multiple proteomic approaches. Mol Vis. 2008;14:456.
CAS
Google Scholar
Posa A, Bräuer L, Schicht M, Garreis F, Beileke S, Paulsen F. Schirmer strip vs. capillary tube method: non-invasive methods of obtaining proteins from tear fluid. Ann Anat. 2013;195(2):137–42.
Article
CAS
Google Scholar
Sebbag L, Showman L, McDowell EM, Perera A, Mochel JP. Impact of flow rate, collection devices, and extraction methods on tear concentrations following oral administration of doxycycline in dogs and cats. J Ocul Pharmacol Ther. 2018;34(6):452–9.
Article
CAS
Google Scholar
Sebbag L, Mochel JP. An eye on the dog as the scientist's best friend for translational research in ophthalmology: focus on the ocular surface. Med Res Rev. 2020;40(6):2566–604.
Article
CAS
Google Scholar
Lamagna B, Ciaramella P, Lamagna F, Di Loria A, Brunetti A, Pelagalli A. Aquaporin 1 (AQP1) expression in healthy dog tears. Animals. 2020;10(5):820.
Article
Google Scholar
Gelatt KN, editor. Essentials of veterinary ophthalmology: John Wiley & Sons; 2013.
Google Scholar
Chandler JA, van der Woerdt A, Prittie JE, Chang L. Preliminary evaluation of tear production in dogs hospitalized in an intensive care unit. J Vet Emerg Crit Care. 2013;23(3):274–9.
Article
Google Scholar
Page L, Allbaugh RA, Mochel JP, Peraza J, Bertram M, Sebbag L. Impact of diurnal variation, sex, tear collection method, and disease state on tear protein levels in dogs. Vet Ophthalmol. 2020;23(6):994–1000.
Article
CAS
Google Scholar
Ma JY, Sze YH, Bian JF, Lam TC. Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases. Int J Mol Med. 2021;47(5):1–5.
Article
Google Scholar
Nättinen J, Aapola U, Jylhä A, Vaajanen A, Uusitalo H. Comparison of capillary and Schirmer strip tear fluid sampling methods using SWATH-MS proteomics approach. Transl Vis Sci Technol. 2020;9(3):16.
Article
Google Scholar
Balasubramanian SA, Mohan S, Pye DC, Willcox MD. Proteases, proteolysis and inflammatory molecules in the tears of people with keratoconus. Acta Ophthalmol. 2012;90(4):e303–9.
Article
Google Scholar
Sebbag L, Harrington DM, Mochel JP. Tear fluid collection in dogs and cats using ophthalmic sponges. Vet Ophthalmol. 2018;21(3):249–54.
Article
CAS
Google Scholar
Neagu AN, Jayathirtha M, Baxter E, Donnelly M, Petre BA, Darie CC. Applications of tandem mass spectrometry (MS/MS) in protein analysis for biomedical research. Molecules. 2022;27(8):2411.
Article
CAS
Google Scholar
Galle PR, Foerster F, Kudo M, Chan SL, Llovet JM, Qin S, et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 2019;39(12):2214–29.
Article
Google Scholar
Hanstock HG, Edwards JP, Walsh NP. Tear lactoferrin and lysozyme as clinically relevant biomarkers of mucosal immune competence. Front Immunol. 2019;10:1178.
Article
CAS
Google Scholar
Inic-Kanada A, Nussbaumer A, Montanaro J, Belij S, Schlacher S, Stein E, et al. Comparison of ophthalmic sponges and extraction buffers for quantifying cytokine profiles in tears using Luminex technology. Mol Vis. 2012;18:2717.
CAS
Google Scholar
van Agtmaal EJ, van Haeringen NJ, Bloem MW, Schreurs WH, Saowakontha S. Recovery of protein from tear fluid stored in cellulose sponges. Curr Eye Res. 1987;6(4):585–8.
Article
Google Scholar
Tuft SJ, Dart JK. The measurement of IgE in tear fluid: a comparison of collection by sponge or capillary. Acta Ophthalmol. 1989;67(3):301–5.
Article
CAS
Google Scholar
Farias E, Yasunaga KL, Peixoto RV, Fonseca MP, Fontes W, Galera PD. Comparison of two methods of tear sampling for protein quantification by Bradford method. Pesqui Vet Bras. 2013;33:261–4.
Article
Google Scholar
Kaswan RL, Fullard RJ. Components in normal dog tears and tears from dogs with KCS treated. In: Sjögren’s syndrome: state of the art: proceedings of the fourth international symposium, Tokyo, Japan, august 11-13-1993: Demos Medical Publishing; 1994. p. 265.
Google Scholar
Drazic A, Aksnes H, Marie M, Boczkowska M, Varland S, Timmerman E, et al. NAA80 is actin’s N-terminal acetyltransferase and regulates cytoskeleton assembly and cell motility. Proc Natl Acad Sci. 2018;115(17):4399–404.
Article
CAS
Google Scholar
Cuvertino S, Stuart HM, Chandler KE, Roberts NA, Armstrong R, Bernardini L, et al. ACTB loss-of-function mutations result in a pleiotropic developmental disorder. Am J Hum Genet. 2017;101(6):1021–33.
Article
CAS
Google Scholar
Colin A, Singaravelu P, Théry M, Blanchoin L, Gueroui Z. Actin-network architecture regulates microtubule dynamics. Curr Biol. 2018;28(16):2647–56.
Article
CAS
Google Scholar
Dor M, Eperon S, Lalive PH, Guex-Crosier Y, Hamedani M, Salvisberg C, et al. Investigation of the global protein content from healthy human tears. Exp Eye Res. 2019;179:64–74.
Article
CAS
Google Scholar
Raposo AC, Lebrilla CB, Portela RW, Goonatilleke E, Neto FA, Oriá AP. The proteomics of roadside hawk (Rupornis magnirostris), broad-snouted caiman (caiman latirostris) and loggerhead sea turtle (Caretta caretta) tears. BMC Vet Res. 2020;16(1):1–2.
Article
Google Scholar
Terhaar HM, Allbaugh RA, Mochel JP, Sebbag L. Serum albumin and total protein concentration in the tear film of horses with healthy or diseased eyes. Vet Ophthalmol. 2021;24(1):20–7.
Article
CAS
Google Scholar
Veloso JF, Brandão Guedes PE, Lacerda LC, Santana JO, Mora-Ocampo IY, Pirovani CP, et al. Tear film proteome of healthy domestic cats. Vet Med Int. 2021;2021.
Kim SW, Lee J, Lee B, Rhim T. Proteomic analysis in pterygium; upregulated protein expression of ALDH3A1, PDIA3, and PRDX2. Mol Vis. 2014;20:1192.
CAS
Google Scholar
Nees DW, Wawrousek EF, Robison WG Jr, Piatigorsky J. Structurally normal corneas in aldehyde dehydrogenase 3a1-deficient mice. Mol Cell Biol. 2002;22(3):849–55.
Article
CAS
Google Scholar
Chen HY, Chou HC, Chang SJ, Liao EC, Tsai YT, Wei YS, et al. Proteomic Analysis of Various Rat Ocular Tissues after Ischemia–Reperfusion Injury and Possible Relevance to Acute Glaucoma. Int J Mol Sci. 2017;18(2):334.
Article
Google Scholar
Rossi A, Voigtlaender M, Klose H, Schlüter H, Schön G, Loges S, et al. High aldehyde dehydrogenase levels are detectable in the serum of patients with lung cancer and may be exploited as screening biomarkers. J Oncol. 2019;2019.
Terentiev AA, Moldogazieva NT. Alpha-fetoprotein: a renaissance. Tumor Biol. 2013;34(4):2075–91.
Article
CAS
Google Scholar
Rizzo A, Galgano M, Mutinati M, Sciorsci RL. Alpha-fetoprotein in animal reproduction. Res Vet Sci. 2019;123:281–5.
Article
CAS
Google Scholar
Quaye IK. Haptoglobin, inflammation and disease. Trans R Soc Trop Med Hyg. 2008;102(8):735–42.
Article
CAS
Google Scholar
Lassen B, Bangoura B, Lepik T, Orro T. Systemic acute phase proteins response in calves experimentally infected with Eimeria zuernii. Vet Parasitol. 2015;212(3–4):140–6.
Article
CAS
Google Scholar
Hoter A, Rizk S, Naim HY. The multiple roles and therapeutic potential of molecular chaperones in prostate cancer. Cancers. 2019;11(8):1194.
Article
CAS
Google Scholar
Thomas LW, Lam C, Edwards SW. Mcl-1; the molecular regulation of protein function. FEBS Lett. 2010;584(14):2981–9.
Article
CAS
Google Scholar
Young AI, Timpson P, Gallego-Ortega D, Ormandy CJ, Oakes SR. Myeloid cell leukemia 1 (MCL-1), an unexpected modulator of protein kinase signaling during invasion. Cell Adh Migr. 2018;12(6):513–23.
Article
CAS
Google Scholar
Moreau R, Bataller R, Berg T, Zucman-Rossi J, Jalan R. From the Editor’s desk…: June 2018. J Hepatol. 2018;68(6):1107–9.
Article
Google Scholar
Yang X, Yamazaki H, Yamakoshi Y, Duverger O, Morasso MI, Beniash E. Trafficking and secretion of keratin 75 by ameloblasts in vivo. J Biol Chem. 2019;294(48):18475–87.
Article
CAS
Google Scholar
Sussadee M, Rucksaken R, Havanapan PO, Reamtong O, Thayananuphat A. Changes in tear protein profile in dogs with keratoconjunctivitis sicca following topical treatment using cyclosporine A. Vet World. 2021;14(6):1711.
Article
CAS
Google Scholar
Masson PL, Heremans JF, Dive C. Studies of the proteins of secretions from two villous tumours of the rectum. Digestion. 1966;105(5):270–82.
Article
CAS
Google Scholar
Gillette TE, Allansmith MR. Lactoferrin in human ocular tissues. Am J Ophthalmol. 1980;90(1):30–7.
Article
CAS
Google Scholar
Flanagan JL, Willcox MD. Role of lactoferrin in the tear film. Biochimie. 2009;91(1):35–43.
Article
CAS
Google Scholar
Yu V, Bhattacharya D, Webster A, Bauskar A, Flowers C, Heur M, et al. Clusterin from human clinical tear samples: positive correlation between tear concentration and Schirmer strip test results. Ocul Surf. 2018;16(4):478–86.
Article
Google Scholar
Huang Z, Du CX, Pan XD. The use of in-strip digestion for fast proteomic analysis on tear fluid from dry eye patients. PLoS One. 2018;13(8):e0200702.
Article
Google Scholar
Kota SJ. Expression of tear lipocalin and MMPs in the lacrimal gland and their implication in dry eye disease. Florida: Atlantic University; 2003.
Google Scholar
Connor MA. Role of a novel pattern recognition receptor in antibacterial innate immunity (Doctoral dissertation): University of Georgia.
Yan X, Yan W, Dai L, Jian J. Expression differences of interferon regulatory factor 3 and non-specific cytotoxic cell receptor protein-1 in grass carp (Ctenopharyngodon idella) after challenges with two genotypes of grass carp reovirus, and analysis of antiviral signaling pathways. Iran J Fish Sci. 2020;19(6):2846–64.
Google Scholar
Zanello SB, Nayak R, Zanello LP, Farthing-Nayak P. Identification and distribution of 14.3. 3σ (Stratifin) in the human cornea. Curr Eye Res. 2006;31(10):825–33.
Article
CAS
Google Scholar
Manicam C, Perumal N, Wasielica-Poslednik J, Ngongkole YC, Tschäbunin A, Sievers M, et al. Proteomics unravels the regulatory mechanisms in human tears following acute renouncement of contact lens use: a comparison between hard and soft lenses. Sci Rep. 2018;8(1):1–5.
Article
CAS
Google Scholar
Sebbag L, Yan Y, Smith JS, Allbaugh RA, Wulf LW, Mochel JP. Tear fluid pharmacokinetics following oral prednisone administration in dogs with and without conjunctivitis. J Ocul Pharmacol Ther. 2019;35(6):341–9.
Article
CAS
Google Scholar