Dreier S, Zimmermann B, Moennig V, Greiser-Wilke I. A sequence database allowing automated genotyping of classical swine fever virus isolates. J Virol Methods. 2007;140:95–9.
Article
CAS
Google Scholar
Luo Y, Li S, Sun Y, Qiu HJ. Classical swine fever in China: a minireview. Vet Microbiol. 2014;172:1–6. https://doi.org/10.1016/j.vetmic.2014.04.004.
Article
Google Scholar
Dong W, Lv H, Li C, Liu Y, Wang C, Lin J, et al. MAVS induces a host cell defense to inhibit CSFV infection. Arch Virol. 2018;163:1805–21.
Article
CAS
Google Scholar
Fiebach AR, Guzylack-Piriou L, Python S, Summerfield A, Ruggli N. Classical swine fever virus N(pro) limits type I interferon induction in plasmacytoid dendritic cells by interacting with interferon regulatory factor 7. J Virol. 2011;85:8002–11.
Article
CAS
Google Scholar
Cao Z, Guo K, Zheng M, Ning P, Li H, Kang K, et al. A comparison of the impact of Shimen and C strains of classical swine fever virus on toll-like receptor expression. J Gen Virol. 2015;96:1732–45. https://doi.org/10.1099/vir.0.000129.
Article
CAS
Google Scholar
Bensaude E, Turner JL, Wakeley PR, Sweetman DA, Pardieu C, Drew TW, et al. Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J Gen Virol. 2004;85:1029–37.
Article
CAS
Google Scholar
Johns HL, Bensaude E, La Rocca SA, Seago J, Charleston B, Steinbach F, et al. Classical swine fever virus infection protects aortic endothelial cells from pIpC-mediated apoptosis. J Gen Virol. 2010;91:1038–46.
Article
CAS
Google Scholar
Pei J, Zhao M, Ye Z, Gou H, Wang J, Yi L, et al. Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy. 2014;10:93–110. https://doi.org/10.4161/auto.26843.
Article
CAS
Google Scholar
Ji W, Guo Z, Ding NZ, He CQ. Studying classical swine fever virus: making the best of a bad virus. Virus Res. 2015;197:35–47.
Article
CAS
Google Scholar
Lamp B, Riedel C, Roman-Sosa G, Heimann M, Jacobi S, Becher P, et al. Biosynthesis of classical swine fever virus nonstructural proteins. J Virol. 2011;85:3607–20.
Article
CAS
Google Scholar
Thiel HJ, Stark R, Weiland E, Rumenapf T, Meyers G. Hog cholera virus: molecular composition of virions from a pestivirus. J Virol. 1991;65:4705–12.
Article
CAS
Google Scholar
Dong W, Lv H, Guo K, Wang T, Ouyang Y, Jin M, et al. Classical swine fever virus infection and its NS4A protein expression induce IL-8 production through MAVS signaling pathway in swine umbilical vein endothelial cells. Front Microbiol. 2017;8:2687.
Article
Google Scholar
He Y, Wang A, Chen S, Wu Z, Zhang J, Wang M, et al. Differential immune-related gene expression in the spleens of duck Tembusu virus-infected goslings. Vet Microbiol. 2017;212:39–47. https://doi.org/10.1016/j.vetmic.2017.08.002.
Article
CAS
Google Scholar
Park IB, Choi YC, Lee KT, Chun T. Transcriptome analysis of pig macrophages expressing porcine reproductive and respiratory syndrome virus non-structural protein 1. Vet Immunol Immunopathol. 2021;231:110147. https://doi.org/10.1016/j.vetimm.2020.110147.
Article
CAS
Google Scholar
Moennig V, Floegel-Niesmann G, Greiser-Wilke I. Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J. 2003;165:11–20. https://doi.org/10.1016/s1090-0233(02)00112-0.
Article
CAS
Google Scholar
Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 2005;437:497–504. https://doi.org/10.1038/nature03987.
Article
CAS
Google Scholar
Tang QH, Zhang YM, Xu YZ, He L, Dai C, Sun P. Up-regulation of integrin beta3 expression in porcine vascular endothelial cells cultured in vitro by classical swine fever virus. Vet Immunol Immunopathol. 2010;133:237–42. https://doi.org/10.1016/j.vetimm.2009.07.005.
Article
CAS
Google Scholar
Bekes I, Lob S, Holzheu I, Janni W, Baumann L, Wockel A, et al. Nectin-2 in ovarian cancer: how is it expressed and what might be its functional role? Cancer Sci. 2019;110:1872–82. https://doi.org/10.1111/cas.13992.
Article
CAS
Google Scholar
Sun W, Wu W, Jiang N, Ge X, Zhang Y, Han J, et al. Highly pathogenic PRRSV-infected alveolar macrophages impair the function of pulmonary microvascular endothelial cells. Viruses. 2022;14:452.
Article
Google Scholar
Li C, Zheng H, Wang Y, Dong W, Liu Y, Zhang L, et al. Antiviral role of IFITM proteins in classical swine fever virus infection. Viruses. 2019;11:126.
Article
CAS
Google Scholar
Zhou J, Chen J, Zhang XM, Gao ZC, Liu CC, Zhang YN, et al. Porcine Mx1 protein inhibits classical swine fever virus replication by targeting nonstructural protein NS5B. J Virol. 2018;92:e02147-17.
Article
Google Scholar
Pingale KD, Kanade GD, Karpe YA. Corrigendum. Hepatitis E virus polymerase binds to IFIT1 to protect the viral RNA from IFIT1-mediated translation inhibition. J Gen Virol. 2022;103:001711. https://doi.org/10.1099/jgv.0.001711.
Article
Google Scholar
Ishida Y, Kakuni M, Bang BR, Sugahara G, Lau DT, Tateno-Mukaidani C, et al. Hepatic IFN-Induced protein with tetratricopeptide repeats regulation of HCV infection. J Interferon Cytokine Res. 2019;39:133–46. https://doi.org/10.1089/jir.2018.0103.
Article
CAS
Google Scholar
Lin RJ, Yu HP, Chang BL, Tang WC, Liao CL, Lin YL. Distinct antiviral roles for human 2’,5’-oligoadenylate synthetase family members against dengue virus infection. J Immunol. 2009;183:8035–43. https://doi.org/10.4049/jimmunol.0902728.
Article
CAS
Google Scholar
Wickenhagen A, Sugrue E, Lytras S, Kuchi S, Noerenberg M, Turnbull ML, et al. A prenylated dsRNA sensor protects against severe COVID-19. Science. 2021;374:eabj3624. https://doi.org/10.1126/science.abj3624.
Article
CAS
Google Scholar
Zhao Y, Kang H, Ji Y, Chen X. Evaluate the relationship between polymorphisms of OAS1 gene and susceptibility to chronic hepatitis C with high resolution melting analysis. Clin Exp Med. 2013;13:171–6. https://doi.org/10.1007/s10238-012-0193-6.
Article
CAS
Google Scholar
Chen S, Huang X, Xie Q, Liu Q, Zhu H. The role of long noncoding RNA BST2-2 in the innate immune response to viral infection. J Virol. 2022;96:e0020722.
Article
Google Scholar
Li C, Wang Y, Zheng H, Dong W, Lv H, Lin J, et al. Antiviral activity of ISG15 against classical swine fever virus replication in porcine alveolar macrophages via inhibition of autophagy by ISGylating BECN1. Vet Res. 2020;51:22.
Article
CAS
Google Scholar
Brennan K, Bowie AG. Activation of host pattern recognition receptors by viruses. Curr Opin Microbiol. 2010;13:503–7.
Article
CAS
Google Scholar
Kanneganti TD. Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol. 2010;10:688–98.
Article
CAS
Google Scholar
Mikula I Jr, Pastorekova S, Mikula I. Sr. Toll-like receptors in immune response to the viral infections. Acta Virol. 2010;54:231–45.
Article
CAS
Google Scholar
Loo YM, Gale M. Jr. Immune signaling by RIG-I-like receptors. Immunity. 2011;34:680–92.
Article
CAS
Google Scholar
Dong XY, Liu WJ, Zhao MQ, Wang JY, Pei JJ, Luo YW, et al. Classical swine fever virus triggers RIG-I and MDA5-dependent signaling pathway to IRF-3 and NF-kappaB activation to promote secretion of interferon and inflammatory cytokines in porcine alveolar macrophages. Virol J. 2013;10:286.
Article
Google Scholar
Fan S, Yuan J, Deng S, Chen Y, Xie B, Wu K, et al. Activation of Interleukin-1beta release by the classical swine fever virus is dependent on the NLRP3 Inflammasome, which affects Virus Growth in Monocytes. Front Cell Infect Microbiol. 2018;8:225. https://doi.org/10.3389/fcimb.2018.00225.
Article
CAS
Google Scholar
van Gent M, Sparrer KMJ, Gack MU. TRIM proteins and their roles in antiviral host defenses. Annu Rev Virol. 2018;5:385–405. doi:https://doi.org/10.1146/annurev-virology-092917-043323.
Article
CAS
Google Scholar
Griffin DE, Hardwick JM. Regulators of apoptosis on the road to persistent alphavirus infection. Annu Rev Microbiol. 1997;51:565–92.
Article
CAS
Google Scholar
Ruggli N, Bird BH, Liu L, Bauhofer O, Tratschin JD, Hofmann MA. N(pro) of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-alpha/beta induction. Virology. 2005;340:265–76.
Article
CAS
Google Scholar
Tang Q, Guo K, Kang K, Zhang Y, He L, Wang J. Classical swine fever virus NS2 protein promotes interleukin-8 expression and inhibits MG132-induced apoptosis. Virus Genes. 2011;42:355–62. https://doi.org/10.1007/s11262-011-0582-z.
Article
CAS
Google Scholar
Asim M, Chaturvedi R, Hoge S, Lewis ND, Singh K, Barry DP, et al. Helicobacter pylori induces ERK-dependent formation of a phospho-c-Fos c-Jun activator protein-1 complex that causes apoptosis in macrophages. J Biol Chem. 2010;285:20343–57. doi:https://doi.org/10.1074/jbc.M110.116988.
Article
CAS
Google Scholar
Kim H, Ray R. Evasion of TNF-alpha-mediated apoptosis by hepatitis C virus. Methods Mol Biol. 2014;1155:125–32. https://doi.org/10.1007/978-1-4939-0669-7_11.
Article
Google Scholar
Obeng E. Apoptosis (programmed cell death) and its signals - a review. Braz J Biol. 2021;81:1133–43. https://doi.org/10.1590/1519-6984.228437.
Article
CAS
Google Scholar
Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45:487–98. https://doi.org/10.1111/j.1365-2184.2012.00845.x.
Article
CAS
Google Scholar
Zhou X, Jiang W, Liu Z, Liu S, Liang X. Virus infection and death receptor-mediated apoptosis. Viruses. 2017;9:316.
Article
Google Scholar
Chang C, Su H, Zhang D, Wang Y, Shen Q, Liu B, et al. AMPK-Dependent phosphorylation of GAPDH triggers Sirt1 activation and is necessary for Autophagy upon glucose starvation. Mol Cell. 2015;60:930–40. https://doi.org/10.1016/j.molcel.2015.10.037.
Article
CAS
Google Scholar
Radoshevich L, Debnath J. ATG12-ATG3 and mitochondria. Autophagy. 2011;7:109–11. https://doi.org/10.4161/auto.7.1.13998.
Article
Google Scholar
Micaroni M, Stanley AC, Khromykh T, Venturato J, Wong CX, Lim JP, et al. Rab6a/a’ are important golgi regulators of pro-inflammatory TNF secretion in macrophages. PLoS One. 2013;8:e57034. https://doi.org/10.1371/journal.pone.0057034.
Article
CAS
Google Scholar
Auray G, Talker SC, Keller I, Python S, Gerber M, Liniger M, et al. High-resolution profiling of Innate Immune responses by Porcine dendritic cell subsets in vitro and in vivo. Front Immunol. 2020;11:1429. https://doi.org/10.3389/fimmu.2020.01429.
Article
CAS
Google Scholar
Liniger M, Gerber M, Renzullo S, Garcia-Nicolas O, Ruggli N. TNF-mediated inhibition of classical swine fever virus replication is IRF1-, NF-kappaB- and JAK/STAT signaling-dependent. Viruses. 2021;13:2017.
Article
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. https://doi.org/10.1038/nmeth.3317.
Article
CAS
Google Scholar
Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 2011;12:R22. https://doi.org/10.1186/gb-2011-12-3-r22.
Article
CAS
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5. https://doi.org/10.1038/nbt.1621.
Article
CAS
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9. https://doi.org/10.1093/bioinformatics/btu638.
Article
CAS
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480-4. https://doi.org/10.1093/nar/gkm882.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi:https://doi.org/10.1093/nar/28.1.27.
Article
CAS
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28:1947–51. doi:https://doi.org/10.1002/pro.3715.
Article
CAS
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2022. https://doi.org/10.1093/nar/gkac963.
Article
Google Scholar