Jeswal P, Kumar D. Mycobiota and natural incidence of Aflatoxins, Ochratoxin A, and Citrinin in Indian spices confirmed by LC-MS/MS. Int J Microbiol. 2015:1–8. https://doi.org/10.1155/2015/242486.
Murugesan GR, Ledoux DR, Naehrer K, Berthiller F, Applegate TJ, Grenier B, et al. Prevalence and effects of mycotoxins on poultry health and performance and recent development in mycotoxin counteracting strategies. Poult Sci. 2015;94(6):1298–315. https://doi.org/10.3382/ps/pev075.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haque MA, Wang Y, Shen Z, Li X, Saleemi MK, He C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: a review. Microb Pathog. 2020;142:104095. https://doi.org/10.1016/j.micpath.2020.104095.
Article
CAS
PubMed
Google Scholar
Eshetu E, Adugna H, Gebretensay A. An overview on major mycotoxin in animal: its public health implication, economic impact and control strategies. J Health Med Nurs. 2016;25:64–73.
Google Scholar
Mavrommatis A, Giamouri E, Tavrizelou S, Zacharioudaki M, Danezis G, Simitzis PE, et al. Impact of mycotoxins on animals’ oxidative status. Antioxidants. 2021;10:214. https://doi.org/10.3390/antiox10020214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liew WPP, Mohd-Redzwan S. Mycotoxin: it’s impact on gut health and microbiota. Front Cell Infect Microbiol. 2018;8(60):1–17. https://doi.org/10.3389/fcimb.2018.00060.
Article
CAS
Google Scholar
Mgbeahuruike AC, Ejioffor TE, Christian OC, Shoyinka VC, Karlsson M, Nordkvist E. Detoxification of Aflatoxin-contaminated poultry feeds by 3 adsorbents, bentonite, activated charcoal, and Fuller’s earth. J Appl Poult Res. 2018;27(4):461–71. https://doi.org/10.3382/japr/pfy054.
Article
CAS
Google Scholar
Vasiljevi’c M, Marinkovi’c D, Mili’cevi’c D, Pleadin J, Stefanovi’c S, Trialovi’c S, et al. Efficacy of a modified Clinoptilolite based adsorbent in reducing detrimental effects of Ochratoxin a in laying hens. Toxins. 2021;13:469. https://doi.org/10.3390/toxins13070469.
Article
CAS
Google Scholar
Markowiak P, Śliżewska K, Nowak A, Chlebicz A, Żbikowski A, Pawłowski K, et al. Probiotic microorganisms detoxify ochratoxin A in both a chicken liver cell line and chickens. J Sci Food Agric. 2019;99:4309–18. https://doi.org/10.1002/jsfa.9664.
Article
CAS
PubMed
Google Scholar
Piotrowska M. Microbiological decontamination of mycotoxins: opportunities and limitations. Toxins (Basel). 2021;13(11):819. https://doi.org/10.3390/toxins13110819 PMID: 34822603; PMCID: PMC8619243.
Article
CAS
Google Scholar
Kaviani EF, Naeemi AS, Salehzadeh A. Influence of copper oxide nanoparticle on hematology and plasma biochemistry of Caspian trout (Salmo trutta caspius), following acute and chronic exposure. Pollution. 2019;5(1):225–34.
CAS
Google Scholar
Faisal S, Jan H, Alam I, Rizwan M, Hussain Z, Sultana K, et al. In vivo analgesic, anti-inflammatory, and anti-diabetic screening of Bacopa monnieri-synthesized copper oxide nanoparticles. ACS Omega. 2022;7:4071–82. https://doi.org/10.1021/acsomega.1c05410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ling W, Wang M, Xiong C, Xie D, Chen Q, Chu X, et al. Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. Mater Res J. 2019;34(11):1824–44. https://doi.org/10.1557/jmr.2019.129.
Article
CAS
Google Scholar
Sharif M, Rahman M, Ahmed B, Abbas RZ, Hassan F. Copper nanoparticles as growth promoter, antioxidant and anti-bacterial agents in poultry nutrition: prospects and future implications. Biol Trace Elem Res. 2020. https://doi.org/10.1007/s12011-020-02485-1.
Hussain Z, Khan JA, Anwar H, Andleeb N, Murtaza S, Ashar A, et al. Synthesis, characterization, and pharmacological evaluation of zinc oxide nanoparticles formulation. Toxicol Ind Health. 2018;748233718793508:753–63. https://doi.org/10.1177/0748233718793508.
Article
CAS
Google Scholar
Horky P, Skalickova S, Baholet D, Skladanka J. Nanoparticles as a solution for eliminating the risk of Mycotoxins. Rev Nanomaterials. 2018;8:727. https://doi.org/10.3390/nano8090727.
Article
CAS
Google Scholar
Abd-Elsalam KA, Hashim AF, Alghuthaymi MA, Said-Galiev E. Nanobiotechnological strategies for toxigenic fungi and mycotoxin control. Chapter 10. In: Food preservation. Cambridge: Academic; 2017. p. 337–64. https://doi.org/10.1016/B978-0-12-804303-5.00010-9.
Chapter
Google Scholar
Mohamad F, David M, Nuno F, Sylvaine F, Bruggraber, Sarah J, et al. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. FASEB J. 2014;28(8):3671–8. https://doi.org/10.1096/fj.14-251520.
Article
CAS
Google Scholar
Ahmadi M, Poorghasemi M, Seidavi AR, Hatzigiannakis E, Milis C. An optimum level of nano-selenium supplementation of a broiler diet according to the performance, economical parameters, plasma constituents and immunity. J Elem. 2020;25(3):1187–98.
Google Scholar
Mouhamed AE, Hassan AA, Hassan MA, El Hariri M, Refai M. Effect of metal nanoparticles on the growth of ochratoxigenic moulds and ochratoxin a production isolated from food and feed. Int J Res Stud Biosci. 2015;3(9):1–14 https://scholar.cu.edu.eg/?q=hanem/files/03v3i904-6.pdf.
Google Scholar
El-Tawab AAA, El-Hofy FI, Metwally AA. Comparative study on antifungal activity of Fe2O3 , and Fe3O4 nanoparticles. Int J Adv Res. 2018;6:189–94. https://doi.org/10.21474/IJAR01/6204.
Article
Google Scholar
Velmurugana K, Venkatachalapathy VSK, Sendhilnathanc S. Synthesis of nickel zinc iron nanoparticles by coprecipitation technique. Mater Res. 2010;13(3):299–303.
Article
Google Scholar
Wright JP, Bell AMT, Attfield JP. Variable temperature powder neutron diffraction study of the Verwey transition in magnetite Fe3 O4. Solid State Sci. 2000;2:747–53.
Article
CAS
Google Scholar
Allam RM, Al-Abd AM, Khedr A, Sharaf OA. Fingolimod interrupts the cross talk between estrogen metabolism and sphingolipid metabolism within prostate cancer cells. Toxicol Lett. 2018;291:77–85. https://doi.org/10.1016/j.toxlet.2018.04.008.
Article
CAS
PubMed
Google Scholar
Trucksess MW, Stack ME, Nesheim S, Page SW, Albert RH, Hansen TJ, et al. Immunoaffinity column coupled with solution fluorometry or liquid chromatography postcolumnderivatization for determination of aflatoxins in corn, peanuts, and peanut butter: collaborative study. J Assoc Off Anal Chem. 1991;74(1):81–8 PMID: 2026580.
CAS
PubMed
Google Scholar
Scott PM, Kanhere SR. Determination of ochratoxin A in beer. Food Addit Contam. 1995;12(4):591–8. https://doi.org/10.1080/02652039509374347.
Article
CAS
PubMed
Google Scholar
Codex Alimentarius. Codex Alimentarius international food standards, General standard for contaminants and toxins in food and feed. CXS 193–1995. Adopted in 1995. Revised in 1997, 2006, 2008, 2009 Amended in 2010, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019. Food and Agriculture Organization of the United Nations (FAO), the World Health Organization (WHO). https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf.
EC. Commission Regulation (EC) No 1881/2006a of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. European Commission. Off J Eur Union L. 364:5–24 Amended untill M33: Commission Regulation (EU) 2020/1322 of 23 September 2020. Current consolidated version: 14/10/2020. http://data.europa.eu/eli/reg/2006/1881/2020-10-14.
EC. Commission Recommendation of 17 August 2006 b on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT- 2 and fumonisins in products intended for animal feeding (2006/ 576/EC). European Commission. Off J Eur Union L. 2006;229:7–9.
Google Scholar
EC. Commission recommendation of 27 march 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products (2013/165/EU). European Commission. Off J Eur Union L. 2013;91:12–5.
Google Scholar
EFSA CONTAM Panel (European Food Safety Authority Panel on Contaminants in the Food Chain), Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl-Kraupp B, et al. Scientific opinion on the risk assessment of ochratoxin A in food. EFSA J. 2020;18(5):6113, 150 pp. https://doi.org/10.2903/j.efsa.2020.6113.
Article
CAS
Google Scholar
Feldman BF, Zinki JG, Jain VC. Schalm’s veterinary hematology, Chapters 60, 177 and 178. 5th ed. Canada: Lippincott Williams and Wilkins. A Wolters Co.; 2000. p. 417–32. 1145–1154
Google Scholar
Campbell TW. Avian hematology and cytology. Ames: State University Press; 1997.
Google Scholar
Quick AJ. Hemorrhagic disease and thrombosis. 2nd ed. Philadelphia: Lee and Fibiger; 1966.
Google Scholar
Rajaraman V, Nonnecke BJ, Franklin ST, Hamell DC, Horst RL. Effect of vitamin A and E on nitric oxide production by blood mononuclear leukocytes from neonatal calves fed milk replacer. J Dairy Sci. 1998;81:3278–85.
Article
CAS
PubMed
Google Scholar
Municio C, Alvarez Y, Montero O, Hugo E, Rodríguez M, Domingo E, et al. The response of human macrophages to β-glucans depends on the inflammatory milieu. PLoS One. 2013;8(4):e62016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reitman S, Frankel S. A colorimetric method for determination of serum glutamic oxaloacetic transaminase and serum glutamic pyruvic transaminase. Am J Clin Path. 1957:25–65.
Szasz G. Gamma-glutamyltranspeptidase. In: Bergmeyer HU, editor. Methods of enzymatic analysis, vol. 2. 2nd ed. New York and London: Academic; 1974. p. 715–20.
Chapter
Google Scholar
Sizova Е, Miroshnikov S, Lebedev S, Usha B, Shabunin S. Use of nanoscale metals in poultry diet as a mineral feed additive. Anim Nutr. 2020;6:185–91.
Article
Google Scholar
Gornall AG, Bardawill CJ, David MM. Determination of serum protein by means of the biuret reagent. J Biol Chem. 1949;177:751.
Article
CAS
PubMed
Google Scholar
Doumas BT, Watson WA, Biggs HG. Albumin standards and the measurement of serum albumin with bromocresol green. Clin Chim Acta. 1971;31:87–96.
Article
CAS
PubMed
Google Scholar
Coles EH. Veterinary clinical pathology. 3rd ed. Philadelphia: W.B. Saunders Co.; 1974.
Google Scholar
Kessler G, Wolfman M. An automated procedure for the simultaneous determination of calcium and phosphorus. Clin Chem. 1964;10:686.
Article
CAS
PubMed
Google Scholar
Frankel S. Electrolytes. In: Frankel S, Reitman S, editors. Gradwhol’s clinical laboratory methods and diagnosis. 6th ed. St. Louis: Mosby; 1963. p. 188.
Google Scholar
Yagi K. Lipid peroxidation in blood plasma or serum. Meth Enzymol. 1984;105:328–31.
Article
CAS
Google Scholar
Beutler E, Duron O, Kelly MBJ. Improved method for the determination of blood glutathione. Lab Clin Med. 1963;61:882.
CAS
Google Scholar
Fossati P, Prencipe L, BetriG. Colorimetric method for determination of serum uric acid. Clin Chem. 1980;26(2):227–73.
Article
CAS
PubMed
Google Scholar
Di Giorgio J. Non protein nitrogenous constituents. In: Henry RJ, Cannon DC, Winkelman JW, editors. Clinical chemistry – principles and technics. 2nd ed. Hagerstown: Harper and Row; 1974. p. 541–53.
Google Scholar
Jorhem L, Engman J. Determination of lead, cadmium, zinc, copper, and iron in foods by atomic absorption spectrometry after microwave digestion: NMKL. Collaborative study. Residues and trace elements. J AOAC Int. 2000;83(5):1189–203. https://doi.org/10.1093/jaoac/83.5.1189.
Article
CAS
PubMed
Google Scholar
Drakouli S, Sklinis A, Tziortziou M, Liopoulou S, Natsaridis N, Papageorgiou G, Ntantasios AN, Athanassiou SD. Quantification of all Mycotoxins, using Symmetric lateral flow technology and one step multitoxin aqueous extraction. The World Mycotoxin Forum and the lUPAC Intemational symposium on Mycotoxins, 14-16 October 2019, Belfast, Northern Ireland, Uk. https://www.olmix.com/sites/default/files/19.1_wmf_2019_book_of_abstracts.pdf.
Skiis A, Drakouli S, Tziortziou M, Voulgari DL, Liopoulou S, Papageorgiou G, Zaralis K, Athanassiou SD. Symmetnic lateral flow technology with one step Multitoxin aqueous extraction for the quantification of all Mycotoxins. 9th IntemationalSymposiumon Recent Advances in Food Analysis, November 5-8, 2019, Prague, Czech Republic. http://www.rafa2019.eu/pdf/RAFA2019_BoA_web.pdf.
Li K, Cao Z, Guo Y, Tong C, Yang S, Long M, et al. Selenium yeast alleviates Ochratoxin A-induced apoptosis and oxidative stress via modulation of the PI3K/AKT and Nrf2/Keap 1 signaling pathways in the kidneys of chickens. Oxidat Med Cell Longev. 2020;12:143. https://doi.org/10.1155/2020/4048706.
Article
CAS
Google Scholar
Nikolova PM, Chavali MS. Metal oxide nanoparticles as biomedical materials. Biomimetics. 2020;5(27):1–47. https://doi.org/10.3390/biomimetics5020027.
Article
CAS
Google Scholar
Hassan AA, Howayda ME, Mahmoud HH. Effect of zinc oxide nanoparticles on the growth of some mycotoxigenicmould. Stud Chem Process Technol. 2013;1(4):66–74.
Google Scholar
Rhouati A, Bulbul G, Latif U, Hayat A, Li ZH, Marty JL. Nano-aptasensing in mycotoxin analysis: recent updates and progress. Toxins. 2017;9(11):349. https://doi.org/10.3390/toxins9110349.
Article
CAS
PubMed Central
Google Scholar
Shinde AB, Kale GK, Dhage VN, Gaikwad PK, Jadhav KM. Synthesis, characterization and magnetic properties of cobalt ferrite nanoparticles prepared by glycine assisted sol-gel auto-combustion technique. Solid State Phenom. 2014;209:31–4.
Article
CAS
Google Scholar
Pu Y, Tao X, Zeng X, Le Y, Chen JF. Synthesis of Co–Cu–Zn doped Fe3O4 nanoparticles with tunable morphology and magnetic properties. J Magn Magn Mater. 2010;322:1985–90. https://doi.org/10.1016/j.jmmm.2010.01.018.
Article
CAS
Google Scholar
Kuznetsov M, Mafina M, Belousova O, Vakin N, Shchipakin S, Morozov I. Catalytically active magnetic nanoparticles in the Cu-O system. Inorg Mater. 2015;51:307–18.
Article
CAS
Google Scholar
Al-Dhabaan FA, Shoala T, Ali AAM, Alaa M, Abd-Elsalam K. Chemically-produced copper, zinc nanoparticles and chitosan–bimetallic nanocomposites and their antifungal activity against three phytopathogenic fungi. Int J Agric Technol. 2017;13(5):753–69 Available online http://www.ijat-aatsea.com. ISSN 2630-0192 (Online).
CAS
Google Scholar
Hameed MR, Khan MZ, Khan A, Javed I. Ochratoxin induced pathological alterations in broiler chicks: effect of dose and duration. Pak Vet J. 2012;xx(x):xxx.
Google Scholar
Hanif NQ. Ochratoxicosis in monograstric animals - a review. J Bioresour Manag. 2016;3(1). https://doi.org/10.35691/JBM.5102.0041.
Qu D, Huang X, Han J, Man N. Efficacy of mixed adsorbent in ameliorating ochratoxicosis in broilers fed ochratoxin contaminated diets. Ital J Anim Sci. 2017;16:573–9. https://doi.org/10.1080/1828051X.2017.1302822.
Article
CAS
Google Scholar
Wang C, Zhang L, Su W, Ying Z, He J, Zhang L, et al. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. PLoS One. 2017;12(7):e0181136. https://doi.org/10.1371/journal.pone.0181136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marin DE, Pistol GC, Gras MA, Palade ML, Taranu I. Comparative effect of ochratoxin A on inflammation and oxidative stress parameters in gut and kidney of piglets. Regul Toxicol Pharmacol. 2017;89:224–31. https://doi.org/10.1016/j.yrtph.2017.07.031.
Article
CAS
PubMed
Google Scholar
Bouwmeester H, Van der Zande M, Jepson MA. Effects of foodborne nanomaterials on gastrointestinal tissues and microbiota. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10(1):e1481. https://doi.org/10.1002/wnan.1481.
Article
CAS
Google Scholar
Yausheva Е, Miroshnikov S, Sizova Е. Intestinal microbiome of broiler chickens after use of nanoparticles and metal salts. Environ Sci Pollut Res. 2018;25:18109–20. https://doi.org/10.1007/s11356-018-1991-5.
Article
CAS
Google Scholar
Tilocca B, Witzig M, Rodehutscord M, Seifert J. Variations of phosphorous accessibility causing changes in microbiome functions in the gastrointestinal tract of chickens. PLoS One. 2016;11(10):e0164735. https://doi.org/10.1371/journal.pone.0164735.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One. 2014;9:e91941. https://doi.org/10.1371/journal.pone.0091941.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clavijo V, Flórez MJV. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review. Poult Sci. 2018;97(3):1006–21. https://doi.org/10.3382/ps/pex359.
Article
CAS
PubMed
Google Scholar
Miroshnikov SA, Yausheva EV, Sizova E, Kosyan DB, Donnik IM. Research of opportunities for using iron nanoparticles and amino acids in poultry nutrition. Int J GEOMATE. 2017;13:124–31. https://doi.org/10.21660/2017.40.99216.
Article
Google Scholar
Rahmatollah D, Farzinpour A, Vaziry A, Sadeghi G. Effect of replacing dietary FeSO4 with cysteine-coated Fe3O4 nanoparticles on quails. Ital J Anim Sci. 2018;17(1):121–7. https://doi.org/10.1080/1828051X.2017.1345662.
Article
CAS
Google Scholar
Rehman H, Akram M, Kiyani MM, Yaseen T, Ghani A, Saggu JI, et al. Effect of endoxylanase and iron oxide nanoparticles on performance and histopathological features in broilers. Biol Trace Elem Res. 2020;193:524–53. https://doi.org/10.1007/s12011-019-01737-z.
Article
CAS
PubMed
Google Scholar
Scott A, Vadalasetty KP, Lukasiewicz M, Jaworski S, Wierzbicki M, Chwalibog A, et al. Effect of different levels of copper nanoparticles and copper sulphate on performance, metabolism and blood biochemical profiles in broiler chicken. J Anim Physiol Anim Nutr. 2017;102:364–73. https://doi.org/10.1111/jpn.12754.
Article
CAS
Google Scholar
Jóźwik A, Marchewka J, Strzałkowska N, Horbańczuk J, Szumacher-strabel M, Cieślak A, et al. The effect of different levels of Cu, Zn and Mn nanoparticles in hen Turkey diet on the activity of aminopeptidases. Molecules. 2018;23:1150–8. https://doi.org/10.3390/molecules23051150.
Article
CAS
PubMed Central
Google Scholar
Wang C, Zhang L, Ying Z, He L, Zhou J, Zhang L, et al. Effects of dietary zinc oxide nanoparticles on growth, diarrhea, mineral deposition, intestinal morphology, and barrier of weaned piglets. Biol Trace Elem Res. 2018;185:364–74. https://doi.org/10.1007/s12011-018-1266-5.
Article
CAS
PubMed
Google Scholar
Hoseinifar SH, Ringø E, Masouleh AS, Angeles M. Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: a review. Rev Aquac. 2016:89–102. https://doi.org/10.1111/raq.12082.
Vallejos-Vidal E, Reyes-Lopez F, Teles M, MacKenzie S. The response of fish to immunostimulant diets. Fish Shellfish Immunol. 2016;56:34–69. https://doi.org/10.1016/j.fsi.2016.06.028.
Article
CAS
PubMed
Google Scholar
Saravanan M, Suganya R, Ramesh M, Poopal RK, Gopalan N, Ponpandian N. Iron oxide nanoparticles induced alterations in haematological, biochemical and ionoregulatory responses of an Indian major carp Labeorohita. J Nanopart Res. 2015;17:274. https://doi.org/10.1007/s11051-015-3082-6.
Article
CAS
Google Scholar
Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Srinivasan V. The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachiumrosenbergiipost larvae. J Trace Elem Med Biol. 2016. https://doi.org/10.1016/j.jtemb.2015.12.003.
Srinivasan V, Bhavan PS, Rajkumar G, Satgurunathan T, Muralisankar T. Effects of dietary iron oxide nanoparticles on the growth performance, biochemical constituents and physiological stress responses of the giant freshwater prawn Macrobrachiumrosenbergiipost-larvae. Int J Fish Aquat Stud. 2016;4(2):170–82 https://www.fisheriesjournal.com/archives/2016/vol4issue2/PartC/4-1-91.pdf.
Google Scholar
Biria A, Navidshad B, Mirzaei Aghjehgheshlag F, Nikbin S. The effect of in ovo supplementation of nano zinc oxide particles on hatchability and post-hatch immune system of broiler chicken. Iran J Appl Anim Sci. 2020;10(3):547–53.
CAS
Google Scholar
Hussain S, Vanoirbeek JA, Hoet PH. Interactions of nanomaterials with the immune system. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;4:169–83. https://doi.org/10.1002/wnan.166.
Article
CAS
PubMed
Google Scholar
Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41:2545–61. https://doi.org/10.1039/C2CS15327K.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yausheva E, Miroshnikov S, Sizova Е, Miroshnikova E, Levahin V. Comparative assessment of effect of copper nano and microparticles in chicken. Orient J Chem. 2015;31(4):2327–36. https://doi.org/10.13005/ojc/310461.
Article
CAS
Google Scholar
Scott A, Vadalasetty KP, Sawosz E, Lukasiewicz M, Vadalasetty RKP, Jaworski S, et al. Effect of copper nanoparticles and copper sulphate on metabolic rate and development of broiler embryos. Anim Feed Sci Technol. 2016;220:151–8. https://doi.org/10.1016/j.anifeedsci.2016.08.009.
Article
CAS
Google Scholar
Stone V, Miller MR, Clift MJD, Elder A, Mills NL, Møller P, et al. Nanomaterials versus ambient ultrafine particles: an opportunity to exchange toxicology knowledge. Environ Health Perspect. 2017;125(10):106002. https://doi.org/10.1289/EHP424 PMID: 29017987; PMCID: PMC5933410.
Article
PubMed
PubMed Central
Google Scholar
Kőszegi T, Poór M, Ochratoxin A. Molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins. 2016;8:111. https://doi.org/10.3390/toxins8040111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balakrishna S, Prabhune AA. Review, gamma-glutamyl transferases: a structural, mechanistic and physiological perspective. Front Biol. 2014. https://doi.org/10.1007/s11515-014-1288-0.
Khan AK, Venancio EJ, Hirooka EY, Rigobello F, Ishikawa A, Nagashima LA, et al. Avian ochratoxicosis: a review. Afr J Microbiol Res. 2014;8(35):3216–9.
Article
CAS
Google Scholar
Malekinezhad P, Ellestad LE, Afzali N, Farhangfar SH, Omidi A, Mohammadi A. Evaluation of berberine efficacy in reducing the effects of aflatoxin B1 and ochratoxin A added to male broiler diets. Poult Sci. 2021;100(797–809). https://doi.org/10.1016/j.psj.2020.10.040.
Gonzales-eguia A, Fu CM, Lu FY, Lien T. Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. Livest Sci. 2009;126:122–9. https://doi.org/10.1016/j.livsci.2009.06.009.
Article
Google Scholar
Mroczek-sosnowska N, Batorska M, Lukasiewicz M, Wnuk A, Sawosz E, Jaworski S, et al. Effect of nanoparticles of copper and copper sulfate administered in ovo on hematological and biochemical blood markers of broiler chickens. Ann Warsaw Univ Life Sci-SGGW Anim Sci. 2013;52:141–9.
CAS
Google Scholar
Amara S, Slama IB, Mrad I, Rihane N, Khemissi W, El Mir L, et al. Effects of zinc oxide nanoparticles and/or zinc chloride on biochemical parameters and mineral levels in rat liver and kidney. Hum ExpToxicol. 2014;33(11):1150–7. https://doi.org/10.1177/0960327113510327.
Article
CAS
Google Scholar
Fujihara J, Tongu M, Hashimoto H, Fujita Y, Nishimoto N, Yasuda T, et al. Pro-inflammatory responses and oxidative stress induced by ZnO nanoparticles in vivo following intravenous injection. Eur Rev Med Pharmacol Sci. 2015;19(24):4920–6 PMID: 26744884.
CAS
PubMed
Google Scholar
Mahmoud UT, Abdel-Mohsein HS, Mahmoud MAM, Amen OA, Hassan RIM, Abd-El-Malek AM, et al. Effect of zinc oxide nanoparticles on broilers’ performance and health status. Trop Anim Health Prod. 2020;52(4):2043–54. https://doi.org/10.1007/s11250-020-02229-2 Epub 2020 Feb 3. PMID: 32016879.
Article
PubMed
Google Scholar
Mroczek-sosnowska N, Lukasiewicz M, Adamek D, Kamaszewski M, Niemiec J, Wnuk-gnich A, et al. Effect of copper nanoparticles administered in ovo on the activity of proliferating cells and on the resistance of femoral bones in broiler chickens. Arch Anim Nutr. 2017;71:327–32. https://doi.org/10.1080/1745039x.2017.1331619.
Article
CAS
PubMed
Google Scholar
Osman M, Ahmed M, Sanaa M, Shahinda E. Biochemical studies on the hepatoprotective effects of pomegranate and guava ethanol extracts. New York Sci J. 2011;4(3):27–39 (ISSN: 1554-0200). http://www.sciencepub.net/newyork.
Google Scholar
Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res. 2013. https://doi.org/10.1155/2013/942916.
Lee IC, Kim JC, Ko JW, Park SH, Lim JO, Shin IS, et al. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Int J Nanomedicine. 2016;11:2883–900.
CAS
PubMed
PubMed Central
Google Scholar
Behera T, Swain P, Rangacharulu PV, Samanta M. Nano-Fe as feed additive improves the hematological and immunological parameters of fish, Labeorohita H. Appl Nanosci. 2014;4(6):687–94. https://doi.org/10.1007/s13204-013-0251-8.
Article
CAS
Google Scholar
Ognik K, Sembratowicz I, Cholewińska E, Jankowski J, Kozłowski K, Juśkiewicz J, et al. The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Anim Sci J. 2018;89:579–88. https://doi.org/10.1111/asj.12956.
Article
CAS
PubMed
Google Scholar
Sawosz E, Łukasiewicz M, Łozicki A, Sosnowska M, Jaworski S, Niemiec J, et al. Effect of copper nanoparticles on the mineral content of tissues and droppings and growth of chickens. Arch Anim Nutr. 2018;72(5):396–406. https://doi.org/10.1080/1745039X.2018.1505146.
Article
CAS
PubMed
Google Scholar
El-Kassas S, El-Nagggar K, Abdo SE, Abdo W, Abeer AK. Dietary supplementation with coper oxide nanoparticles ameliorates chronic heet stress in broiler chickens. Anim Prod Sci. 2020;60(2):254–68.
Article
CAS
Google Scholar
Navale GR, Thripuranthaka M, Late DJ, Shinde S. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. J Nanotechnol Nanomed. 2015;3:1033–41.
Google Scholar
Xueting L, Rehman MU, Zhang H, Tian X, Wu X, Shixue, et al. Protective effects of -elemental selenium against chromium-vi-induced oxidative stress in broiler liver. J Biol Regul Homeost Agents. 2018;32(1):47–54.
CAS
PubMed
Google Scholar
Martinezde-Anda A, Valdivia A, Jaramillo-Juarez F, Reyes J, Ortiz R, Quezada T, et al. Effects of aflatoxin chronic intoxication in renal function of laying hens. Poult Sci. 2010;89:1622–8.
Article
CAS
Google Scholar
Yang Y, Guo J, Yoon S, Jin Z, Choi J, Piao X, et al. Early energy and protein reduction: effects on growth, blood profiles and expression of genes related to protein and fatmetabolismin broilers. Br Poult Sci. 2009;50:218–27. https://doi.org/10.1080/00071660902736706.
Article
CAS
PubMed
Google Scholar
Miroshnikov SA, Yausheva EV, Sizova EA, Miroshnikova EP. Comparative assessment of effect of copper nano-and microparticles in chicken. Orient J Chem. 2015;31:2327–36. https://doi.org/10.13005/ojc/310461.
Article
CAS
Google Scholar
Radi AM, Abdel Azeem NM, EL-Nahass EL-S. Comparative effects of zinc oxide and zinc oxide nanoparticle as feed additives on growth, feed choice test, tissue residues, and histopathological changes in broiler chickens. Environ Sci Pollut Res. 2021;28(5158–5167). https://doi.org/10.1007/s11356-020-09888-6.
Wu W, Wu Z, Yu T, Jiang C, Kim W. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater. 2015;16(2):023501. https://doi.org/10.1088/1468-6996/16/2/023501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdel-Khalek AA, Badran SR, Marie MAS. The efficient role of rice husk in reducing the toxicity of iron and aluminum oxides nanoparticles in Oreochromisniloticus: hematological, bioaccumulation, and histological endpoints. Water Air Soil Pollut. 2020;231:53. https://doi.org/10.1007/s11270-020-4424-2.
Article
CAS
Google Scholar
Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep. 2018;8(1):2082–94. https://doi.org/10.1038/s41598-018-19628-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdel-Khalek AA, Badran SR, Marie M-AS. Toxicity evaluation of copper oxide bulk and nanoparticles in Nile Tilapia, Oreochromisniloticus, using hematological, bioaccumulation and histological biomarkers. Fish Physiol Biochem. 2016;42:1225–36. https://doi.org/10.1007/s10695-016-0212-8.
Article
CAS
PubMed
Google Scholar
Benavides M, Fernández-Lodeiro J, Coelho P, Lodeiro C, Diniz MS. Single and combined effects of aluminum (Al2O3) and zinc (ZnO) oxide nanoparticles in a freshwater fish, Carassiusauratus. Environ Sci Pollut Res. 2016;23:24578–91. https://doi.org/10.1007/s11356-016-7915-3.
Article
CAS
Google Scholar
Ramiah SK, Awad EA, Mookiah S, Idrus Z. Effects of zinc oxide nanoparticles on growth performance and concentrations of malondialdehyde, zinc in tissues, and corticosterone in broiler chickens under heat stress conditions. Poult Sci. 2019;0:1–11. https://doi.org/10.3382/ps/pez093.
Article
CAS
Google Scholar
Eskandani M, Janmohammadi H, Mirghelenj SA, Ebrahimi M, Kalanaky S. Effects of zinc nanoparticles on growth performance, carcass characteristics, immunity, and meat quality of broiler chickens. Iranian J Appl Anim Sci. 2021;11(1):135–46.
CAS
Google Scholar
Abbas S, Javed M, Ahmad Khan H, Rahman K. Toxicity and bioaccumulation of metals (Al And Co) in three economically important carnivorous fish species of Pakistan. Int J Agric Biol. 2018;20(5):1123–8. https://doi.org/10.17957/IJAB/15.0621.
Article
CAS
Google Scholar
Abdel-Khalek AA. Antioxidant responses and nuclear deformations in freshwater fish, Oreochromisniloticus, facing degraded environmental conditions. Bull Environ Contam Toxicol. 2015;94(6):701–8. https://doi.org/10.1007/s00128-015-1509-5.
Article
CAS
PubMed
Google Scholar
Javed M, Ahmad I, Usmani N, Ahmad M. Bioaccumulation, oxidative stress and genotoxicity in fish (Channa punctatus) exposed to a thermal power plant effluent. Ecotoxicol Environ Saf. 2016;127:163–9. https://doi.org/10.1016/j.ecoenv.2016.01.007.
Article
CAS
PubMed
Google Scholar
Abdel-Khalek AA, Elhaddad E, Mamdouh S, Marie MS. The chronic exposure to discharges of sabal drain induces oxidative stress and histopathological alterations in Oreochromis niloticus. Bull Environ Contam Toxicol. 2018;101(1):92–8.
Article
CAS
PubMed
Google Scholar
Krstanovic V, Sarkanj B, Velic N, Mastanjevic K, Santek B. Mycotoxins in malting and brewing by-products used for animal feed. J Biotechnol. 2017;256:S68–9.
Article
Google Scholar
Wang C, Lu J, Zhou L, Li J, Xu J, Li W, et al. Effects of Long-term exposure to zinc oxide nanoparticles on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, Mn) in mice. PLoS One. 2016;11(10):e0164434. https://doi.org/10.1371/journal.pone.0164434.
Article
CAS
PubMed
PubMed Central
Google Scholar