Bouvier NM, Palese P. The biology of influenza viruses. Vaccine. 2008;26(Suppl 4):D49–53.
Article
CAS
Google Scholar
Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, et al. Characterization of a novel influenza a virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol. 2005;79(5):2814–22.
Article
CAS
Google Scholar
Swayne DE, Suarez DL. Highly pathogenic avian influenza. Rev Sci Tech. 2000;19(2):463–82.
Article
CAS
Google Scholar
Bosch FX, Garten W, Klenk HD, Rott R. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology. 1981;113(2):725–35.
Article
CAS
Google Scholar
Steiner DF, Smeekens SP, Ohagi S, Chan SJ. The new enzymology of precursor processing endoproteases. J Biol Chem. 1992;267(33):23435–8.
Article
CAS
Google Scholar
Centers for Disease C. Prevention: isolation of avian influenza A(H5N1) viruses from humans--Hong Kong, May-December 1997. MMWR Morb Mortal Wkly Rep. 1997;46(50):1204–7.
Google Scholar
Chan PK. A review on human influenza a H5N1 infections in Hong Kong. Sci China C Life Sci. 2009;52(5):412–8.
Article
Google Scholar
Duan L, Bahl J, Smith GJ, Wang J, Vijaykrishna D, Zhang LJ, et al. The development and genetic diversity of H5N1 influenza virus in China, 1996-2006. Virology. 2008;380(2):243–54.
Article
CAS
Google Scholar
Chen H, Deng G, Li Z, Tian G, Li Y, Jiao P, et al. The evolution of H5N1 influenza viruses in ducks in southern China. Proc Natl Acad Sci U S A. 2004;101(28):10452–7.
Article
CAS
Google Scholar
Guan Y, Peiris JS, Lipatov AS, Ellis TM, Dyrting KC, Krauss S, et al. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A. 2002;99(13):8950–5.
Article
CAS
Google Scholar
Li KS, Guan Y, Wang J, Smith GJ, Xu KM, Duan L, et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature. 2004;430(6996):209–13.
Article
CAS
Google Scholar
Shen H, Wu B, Chen Y, Bi Y, Xie Q. Influenza a(H5N6) virus reassortant, southern China, 2014. Emerg Infect Dis. 2015;21(7):1261–2.
Article
CAS
Google Scholar
Bi Y, Chen Q, Wang Q, Chen J, Jin T, Wong G, et al. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China. Cell Host Microbe. 2016;20(6):810–21.
Article
CAS
Google Scholar
Lee DH, Bertran K, Kwon JH, Swayne DE. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. J Vet Sci. 2017;18(S1):269–80.
Article
Google Scholar
Poen MJ, Venkatesh D, Bestebroer TM, Vuong O, Scheuer RD, Oude Munnink BB, et al. Co-circulation of genetically distinct highly pathogenic avian influenza A clade 2.3.4.4 (H5N6) viruses in wild waterfowl and poultry in Europe and East Asia, 2017–18. Virus Evol. 2019;5(1):vez004.
Article
Google Scholar
Bi Y, Li J, Li S, Fu G, Jin T, Zhang C, et al. Dominant subtype switch in avian influenza viruses during 2016-2019 in China. Nat Commun. 2020;11(1):5909.
Article
CAS
Google Scholar
Bi Y, Tan S, Yang Y, Wong G, Zhao M, Zhang Q, et al. Clinical and immunological characteristics of human infections with H5N6 avian influenza virus. Clin Infect Dis. 2019;68(7):1100–9.
Article
CAS
Google Scholar
Yang J, Li Y, Guo J, Luo K, Yu H, Chen Y, et al. Genetic characterization of an H5N6 avian influenza virus from chickens in Guangdong, China. J Inf Secur. 2020;82(3):414.
Google Scholar
Ma W, Vincent AL, Gramer MR, Brockwell CB, Lager KM, Janke BH, et al. Identification of H2N3 influenza a viruses from swine in the United States. Proc Natl Acad Sci U S A. 2007;104(52):20949–54.
Article
CAS
Google Scholar
Guo H, de Vries E, McBride R, Dekkers J, Peng W, Bouwman KM, et al. Highly pathogenic influenza a(H5Nx) viruses with altered H5 receptor-binding specificity. Emerg Infect Dis. 2017;23(2):220–31.
Article
CAS
Google Scholar
Wen F, Blackmon S, Olivier AK, Li L, Guan M, Sun H, et al. Mutation W222L at the receptor binding site of hemagglutinin could facilitate viral adaption from equine influenza A(H3N8) virus to dogs. J Virol. 2018;92:8.
Article
Google Scholar
Hiono T, Okamatsu M, Igarashi M, McBride R, de Vries RP, Peng W, et al. Amino acid residues at positions 222 and 227 of the hemagglutinin together with the neuraminidase determine binding of H5 avian influenza viruses to sialyl Lewis X. Arch Virol. 2016;161(2):307–16.
Article
CAS
Google Scholar
Sutton TC, Lamirande EW, Czako R, Subbarao K. Evaluation of the biological properties and cross-reactive antibody response to H10 influenza viruses in ferrets. J Virol. 2017;91:19.
Article
Google Scholar
Matsuoka Y, Swayne DE, Thomas C, Rameix-Welti MA, Naffakh N, Warnes C, et al. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice. J Virol. 2009;83(9):4704–8.
Article
CAS
Google Scholar
Yamaji R, Saad MD, Davis CT, Swayne DE, Wang D, Wong FYK, et al. Pandemic potential of highly pathogenic avian influenza clade 2.3.4.4 A(H5) viruses. Rev Med Virol. 2020;30(3):e2099.
Article
Google Scholar
Wen F, Li W, Guo J, Yang J, Zhang X, Mei K, et al. Genetic characterization of a novel genotype H9N2 avian influenza virus from chicken in South China. J Inf Secur. 2020;81(5):816–46.
CAS
Google Scholar
Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza a viruses. Arch Virol. 2001;146(12):2275–89.
Article
CAS
Google Scholar
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–303.
Article
CAS
Google Scholar