Helmerhorst EJ, Oppenheim FG. Saliva: a dynamic proteome. J Dent Res. 2007;86:680–93.
CAS
PubMed
Google Scholar
Schipper RG, Silletti E, Vingerhoeds MH. Saliva as research material: biochemical, physicochemical and practical aspects. Arch Oral Biol. 2007;52:1114–35.
CAS
PubMed
Google Scholar
Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001;2:162–9.
Google Scholar
Pasha S, Inui T, Chapple I, Harris S, Holcombe L, Grant MM. The saliva proteome of dogs: variations within and between breeds and between species. Proteomics. 2018;18:1–7.
Google Scholar
Lamy E, da Costa G, Santos R, Capela E, Silva F, Potes J, Pereira A, et al. Sheep and goat saliva proteome analysis: a useful tool for ingestive behavior research? Physiol Behav. 2009;98:393–401.
CAS
PubMed
Google Scholar
Larmas M, Scheinin A. Studies on dog saliva. I. some physico-chemical characteristics. Acta Odontol Scand. 1971;2:205–14.
Google Scholar
Borah BM, Halter TJ, Xie B, Henneman ZJ, Siudzinski TR, Harris S, et al. Kinetics of canine dental calculus crystallization: an in vitro study on the influence of inorganic components of canine saliva. J Colloid Interface Sci. 2014;425:20–6.
CAS
PubMed
Google Scholar
Harvey CE. Periodontal disease in dogs. Etiopathogenesis, prevalence, and significance. Vet Clin North Am Small Anim Pr. 1998;28:1111–28 vi.
CAS
Google Scholar
Cleland WP. Opportunities and obstacles in veterinary dental drug delivery. Adv Drug Deliv Rev. 2001;50:261–75.
CAS
PubMed
Google Scholar
Pinto ABF, Saad FMOB, Leite CAL, Aquino AA, Alves MP, Pereira DAR. Sodium tripolyphosphate and sodium hexametaphosphate in preventing dental calculus accumulation in dogs. Arq Bras Med Vet e Zootec. 2008;60:1426–31.
CAS
Google Scholar
Lendenmann U, Grogan J, Oppenheim FG. Saliva and dental pellicle-a review. Adv Dent Res. 2000;14:22–8.
CAS
PubMed
Google Scholar
Siqueira WL, Bakkal M, Xiao Y, Sutton JN, Mendes FM. Quantitative proteomic analysis of the effect of fluoride on the acquired enamel pellicle. PLoS One. 2012;7:e42204.
CAS
PubMed
PubMed Central
Google Scholar
Coignoul E, Cheville N. Calcified microbial plaque. Dental calculus of dogs. Am J Pathol. 1984;117:499–501.
CAS
PubMed
PubMed Central
Google Scholar
Jepsen S, Deschner J, Braun A, Schwarz F, Eberhard J. Calculus removal and the prevention of its formation. Periodontol 2000. 2011;55:167–88.
PubMed
Google Scholar
Lorenzo MA, Bello LFCO, Rothstein JMJ, Santos AC. Incidence of dental calculus and periodontal disease by dental group, dental arch and age in beagle dogs. J Agro Sci. 2014;13:275–83.
Google Scholar
Camargo A, Novais AA, Júnior DF. Periodontal disease in dogs and cats referred to the veterinary hospital of UFMT, campus Sinop. MT Seasinop. 2015;3:16–24.
Google Scholar
Emily P, Penman S. Handbook of small animal dentistry. 1st ed. Oxford: Pergamon Press plc; 1990.
Kortegaard HE, Eriksen T, Baelum V. Screening for periodontal disease in research dogs - a methodology study. Acta Vet Scand. 2014;56:77.
PubMed
PubMed Central
Google Scholar
Fernandes NA, Borges APB, Reis EC, Sepulveda RV, Pontes KCD. Prevalence of periodontal disease in dogs and owners’ level of awareness - a prospective clinical trial. Rev Ceres. 2012;59:446–51.
Google Scholar
Aebersold R, Goodlett DR. Mass spectrometry in proteomics. Chem Rev. 2001;2:269–96.
Google Scholar
Oppenheim FG, Salih E, Siqueira WL, Zhang W, Helmerhorst EJ. Salivary proteome and its genetic polymorphisms. Ann N Y Acad Sci. 2007;1098:22–50.
CAS
PubMed
Google Scholar
Xiao Y, Karttunen M, Jalkanen J, Mussi MC, Liao Y, Grohe B, et al. Hydroxyapatite growth inhibition effect of pellicle statherin peptides. J Dent Res. 2015;94:1106–12.
CAS
PubMed
Google Scholar
de Sousa-Pereira P, Amado F, Abrantes J, Ferreira R, Esteves PJ, Vitorino R. An evolutionary perspective of mammal salivary peptide families: cystatins, histatins, statherin and PRPs. Arch Oral Biol. 2013;58:451–8.
PubMed
Google Scholar
de Sousa-Pereira P, Abrantes J, Pinheiro A, Colaço B, Vitorino R, Esteves PJ. Evolution of C, D and S-type cystatins in mammals: an extensive gene duplication in primates. PLoS One. 2014;9:e109050.
PubMed
PubMed Central
Google Scholar
de Sousa-Pereira P, Cova M, Abrantes J, Ferreira R, Trindade F, Barros A, et al. Cross-species comparison of mammalian saliva using an LC-MALDI based proteomic approach. Proteomics. 2015;15:1598–607.
PubMed
Google Scholar
Milac TI, Randolph TW, Wang P. Analyzing LC-MS/MS data by spectral count and ion abundance: two case studies. Stat Interface. 2012;5:75–87.
PubMed
PubMed Central
Google Scholar
Khurshid Z, Zohaib S, Najeeb S, Zafar MS, Slowey PD, Almas K. Human saliva collection devices for proteomics: an update. Int J Mol Sci. 2016;17(6):846.
Sanguansermsri P, Jenkinson HF, Thanasak J, Chairatvit K, Roytrakul S, Kittisenachai S, et al. Comparative proteomic study of dog and human saliva. PLoS One. 2018;13:e0208317.
CAS
PubMed
PubMed Central
Google Scholar
Lucena S, Coelho AV, Capela-Silva F, Tvarijonaviciute A, Lamy E. The effect of breed, gender, and acid stimulation in dog saliva proteome. Biomed Res Int. 2018; https://doi.org/10.1155/2018/7456894.
Wenger-Riggenbach B, Boretti FS, Quante S, Schellenberg S, Reusch CE, Sieber-Ruckstuhl NS. Salivary cortisol concentrations in healthy dogs and dogs with hypercortisolism. J Vet Intern Med. 2010;24:551–6.
CAS
PubMed
Google Scholar
Gioso MA, Carvalho VG. Oral anatomy of the dog and cat in veterinary dentistry practice. Vet Clin North Am Small Anim Pract. 2005;35:763–80.
PubMed
Google Scholar
Harvey CE, Nieves MA. Perspectives on veterinary dental care: issues and answers. Small Anim Scope. 1991;11:12–5.
Google Scholar
VenturiniI, MAFA. Retrospective study of 3055 pets referred to ODONTOVET® (Veterinary Dental Center) during 44 months. USP Teses Database. 2006; doi: https://doi.org/10.11606/D.10.2007.tde-14052007-081635.
Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, Malek TB, et al. Genetic structure of the purebred domestic dog. Science. 2004;21(304):1160–4.
Google Scholar
Torres SMF, Furrow E, Souza CP, Granick JL, de Jong EP, Griffin TJ, et al. Salivary proteomics of healthy dogs: An in depth catalog. PLoS One. 2018;13:e0191307.
PubMed
PubMed Central
Google Scholar
Arendt M, Fall T, Lindblad-Toh K, Axelsson E. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes. Anim Genet. 2014;45:716–22.
CAS
PubMed
PubMed Central
Google Scholar
Boehlke C, Zierau O, Hannig C. Salivary amylase - the enzyme of unspecialized euryphagous animals. Arch Oral Biol. 2015;60:1162–76.
CAS
PubMed
Google Scholar
Oppenheim FG. Wiley-Blackwell (Org.), Salivary Diagnostics. Iowa: EUA; 2008. p. 81.
Google Scholar
Carpenter GH. The secretion, components, and properties of saliva. Annu Rev Food Sci Technol. 2013;4:267–76.
CAS
PubMed
Google Scholar
Ide M, Saruta J, To M, Yamamoto Y, Sugimoto M, Fuchida S, et al. Relationship between salivary immunoglobulin a, lactoferrin and lysozyme flow rates and lifestyle factors in Japanese children: a cross-sectional study. Acta Odontol Scand. 2016;74:576–83.
CAS
PubMed
Google Scholar
Yu LP, Sun BG, Li J, Sun L. Characterization of a c-type lysozyme of Scophthalmus maximus: expression, activity, and antibacterial effect. Fish Shellfish Immunol. 2013;34:46–54.
PubMed
Google Scholar
Prager EM, Jollès P. Animal lysozymes c and g: an overview. EXS. 1996;75:9–31.
CAS
PubMed
Google Scholar
Magnadottir B. Fish Shellfish Immunol. 2006;20:137–51.
CAS
PubMed
Google Scholar
Callewaert L, Michiels CW. Lysozymes in the animal kingdom. J Biosci. 2010;35(1):127–60.
CAS
PubMed
Google Scholar
Elias-Boneta AR, Ramirez K, Rivas-Tumanyan S, Murillo M, Toro MJ. Prevalence of gingivitis and calculus in 12-year-old Puerto Ricans: a cross-sectional study. BMC Oral Health. 2018;18(1):13.
PubMed
PubMed Central
Google Scholar
Goetzl EJ, An S. Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 1998;12(15):1589–98.
CAS
PubMed
Google Scholar
Zhang G, Contos JJ, Weiner JA, Fukushima N, Chun J. Comparative analysis of three murine G-protein coupled receptors activated by sphingosine-1-phosphate. Gene. 1999;227(1):89–99.
CAS
PubMed
Google Scholar
Lemos JP, Smaniotto S, Messias CV, Moreira OC, Cotta-de-Almeida V, Dardenne M, et al. Sphingosine-1-phosphate receptor 1 is involved in non-obese diabetic mouse Thymocyte migration disorders. Int J Mol Sci. 2018;19:1446.
PubMed Central
Google Scholar
Murata N, Sato K, Kon J, Tomura H, Yanagita M, Kuwabara A, et al. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem J. 2000;352:809–15.
CAS
PubMed
PubMed Central
Google Scholar
Okajima F. Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an anti-atherogenic mediator? Biochim Biophys Acta. 2002;1582:132–7.
CAS
PubMed
Google Scholar
Naiff PF, Ferraz R, Cunha CF, Orlandi PP, Boechat AL, Bertho AL, Dos-Santos MC. Immunophenotyping in saliva as an alternative approach for evaluation of immunopathogenesis in chronic periodontitis. J Periodontol. 2014;85(5):e111–20.
CAS
PubMed
Google Scholar
Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klöckner U, et al. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci. 1999;19:1912–21.
CAS
PubMed
PubMed Central
Google Scholar
Murbartian J, Arias JM, Lee JH, Gomora JC, Perez-Reyes E. Alternative splicing ofthe rat Cav3.3 T-type calcium channel gene produces variants with distinctfunctional properties. FEBS Lett. 2002;528:272–8.
CAS
PubMed
Google Scholar
Zhang L, Henson BS, Camargo PM, Wong DT. The clinical value of salivary biomarkers for periodontal disease. Periodontol 2000. 2009;51:25–37.
PubMed
Google Scholar
Mize TW, Sundararaj KP, Leite RS, Huang Y. Increased and correlated expression of connective tissue growth factor and transforming growth factor beta 1 in surgically removed periodontal tissues with chronic periodontitis. J Periodontal Res. 2015;50(3):315–9.
CAS
PubMed
Google Scholar
Jun JI, Lau LF. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov. 2011;10(12):945–63.
CAS
PubMed
PubMed Central
Google Scholar
Yan C, Boyd DD. Regulation of matrix metalloproteinase gene expression. J Cell Physiol. 2007;211(1):19–26.
CAS
PubMed
Google Scholar
Jagels MA, Hugli TE. Mixed effects of TGF-beta on human airway epithelial-cell chemokine responses. Immunopharmacology. 2000;48(1):17–26.
CAS
PubMed
Google Scholar
Vezzoli G, Soldati L, Gambaro G. Roles of calcium-sensing receptor (CaSR) in renal mineral ion transport. Curr Pharm Biotechnol. 2009;10:302–10.
CAS
PubMed
Google Scholar
Bandyopadhyay BC, Swaim WD, Sarkar A, Liu X, Ambudkar IS. Extracellular Ca(2+) sensing in salivary ductal cells. J Biol Chem. 2012;287:30305–16.
CAS
PubMed
PubMed Central
Google Scholar
Lee J, Ko M, Joo CK. Rho plays a key role in TGF-beta1-induced cytoskeletal rearrangement in human retinal pigment epithelium. J Cell Physiol. 2008;216(2):520–6.
CAS
PubMed
Google Scholar
Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998;279(5350):509–14.
CAS
PubMed
Google Scholar
Bhowmick NA, Ghiassi M, Bakin A, et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell. 2001;12(1):27–36.
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Wang T, Song M, Pan J. Rho plays a key role in TGF-β1-induced proliferation and cytoskeleton rearrangement of human periodontal ligament cells. Arch Oral Biol. 2014;59(2):149–57. https://doi.org/10.1016/j.archoralbio.2013.11.004.
Article
CAS
PubMed
Google Scholar
Siqueira WL, de Oliveira E, Mustacchi Z, Nicolau J. Electrolyte concentrations in saliva of children aged 6-10 years with Down syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;98:76–9.
PubMed
Google Scholar
Siqueira WL, Siqueira MF, Mustacchi Z, de Oliveira E, Nicolau J. Salivary parameters in infants aged 12 to 60 months with Down syndrome. Spec Care Dentist. 2007;27:202–5.
PubMed
Google Scholar
Toda M, Morimoto K. Comparison of saliva sampling methods for measurement of salivary adiponectin levels. Scand J Clin Lab Invest. 2008;68:823–5.
CAS
PubMed
Google Scholar
Strazdins L, Meyerkort S, Brent V, D'Souza RM, Broom DH, Kyd JM. Impact of saliva collection methods on sIgA and cortisol assays and acceptability to participants. J Immunol Methods. 2005;307:167–71.
CAS
PubMed
Google Scholar
Siqueira WL, Oppenheim FG. Small molecular weight proteins/peptides present in the in vivo formed human acquired enamel pellicle. Arch Oral Biol. 2009;5:437–44.
Google Scholar
Siqueira WL, Margolis HC, Helmerhorst EJ, Mendes FM, Oppenheim FG. Evidence of intact histatins in the in vivo acquired enamel pellicle. J Dent Res. 2010;6:626–30.
Google Scholar
Siqueira WL, Lee YH, Xiao Y, Held K, Wong W. Identification and characterization of histatin 1 salivary complexes by using mass spectrometry. Proteomics. 2012;12:3426–35.
CAS
PubMed
Google Scholar