Betancor L, Pereira M, Martinez A, Giossa G, Fookes M, Flores K, Barrios P, Repiso V, Vignoli R, Cordeiro N. Prevalence of Salmonella enterica in poultry and eggs in Uruguay during an epidemic due to Salmonella enterica serovar Enteritidis. J Clin Microbiol. 2010;48(7):2413–23. .
CAS
PubMed
PubMed Central
Google Scholar
Yang B, Qu D, Zhang X, Shen J, Cui S, Shi Y, Xi M, Sheng M, Zhi S, Meng J. Prevalence and characterization of Salmonella serovars in retail meats of marketplace in Shaanxi, China. Int J Food Microbiol. 2010;141(1–2):63–72. .
CAS
PubMed
Google Scholar
Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM. Foodborne Illness Acquired in the United States—Unspecified Agents. Emerg Infect Dis. 2011;17(1):16–22. .
PubMed
PubMed Central
Google Scholar
Guard-Petter J. The chicken, the egg and Salmonella enteritidis. Environ Microbiol. 2010;3(7):421–30. .
Google Scholar
Samiullah CKK, Roberts JR, Sexton M, May D, Kiermeier A. Effects of egg shell quality and washing on Salmonella Infantis penetration. Int J Food Microbiol. 2013;165(2):77–83. .
CAS
PubMed
Google Scholar
Liu L, Lin L, Zheng L, Hui T, Fan X, Xue N, Min L, Min L, Li X. Cecal microbiome profile altered by Salmonella enterica, serovar Enteritidis inoculation in chicken. Gut Pathogens. 2018;10(1):34-.
PubMed
PubMed Central
Google Scholar
Babu US, Raybourne RB. Impact of dietary components on chicken immune system and Salmonella infection. Expert Rev Anti Infect Ther. 2008;6(1):121–35.
CAS
PubMed
Google Scholar
Matulova M, Varmuzova K, Sisak F, Havlickova H, Babak V, Stejskal K, Zdrahal Z, Rychlik I. Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis. Vet Res. 2013;44(1):1–11.
Google Scholar
Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol. 2007;7(3):179–90. .
CAS
PubMed
Google Scholar
Akdis M. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011;127(3):701-21.e770. .
CAS
PubMed
Google Scholar
Kaiser MG, Cheeseman JH, Kaiser P, Lamont SJ. Cytokine expression in chicken peripheral blood mononuclear cells after in vitro exposure to Salmonella enterica serovar Enteritidis. Poult Sci. 2006;85(11):1907–11.
CAS
PubMed
Google Scholar
Kogut MH, Tellez GI, Mcgruder ED, Hargis BM, Deloach JR. Heterophils are decisive components in the early responses of chickens to SE infections. Microb Pathog. 1994;16(2):141–51. .
CAS
PubMed
Google Scholar
Nerren JR, Swaggerty CL, Mackinnon KM, Genovese KJ, He H, Pevzner I, Kogut MH. Differential mRNA expression of the avian-specific toll-like receptor 15 between heterophils from Salmonella-susceptible and-resistant chickens. Immunogenetics. 2009;61(1):71–7.
CAS
PubMed
Google Scholar
Gary L, Vincenzo F, Shaun M, Smith AL, Nat B, Paul B, Loredo-Osti JC, Kenneth M, Danielle M. Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in chickens. Infect Immun. 2003;71(3):1116–24. .
Google Scholar
Magdalena C, Helena H, Marcela F, Marta M, Hana H, Frantisek S, Ivan R. Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar enteritidis infection. Infect Immun. 2011;79(7):2755–63. .
Google Scholar
Giuseppe M, Antonio LC. The intricate interface between immune system and metabolism. Trends Immunol. 2004;25(4):193–200. .
Google Scholar
Wu G, Liu L, Qi Y, Sun Y, Yang N, Xu G, Zhou H, Li X. Splenic gene expression profiling in White Leghorn layer inoculated with the Salmonella enterica serovar Enteritidis. Anim Genet. 2016;46(6):617–26. .
Google Scholar
Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125(7):1241–52.
CAS
PubMed
Google Scholar
Zhang W, Hou L, Wang T, Lu W, Tao Y, Chen W, Du X, Huang Y. The expression characteristics of mt-ND2 gene in chicken. Mitochondrial Dna. 2015;27(5):3787–92.
PubMed
Google Scholar
Havlíčková V, Kaplanová V, Nůsková H, Drahota Z, Houštěk J. Knockdown of F 1 epsilon subunit decreases mitochondrial content of ATP synthase and leads to accumulation of subunit c. BBA. 2010;1797(6–7):1124–9. .
PubMed
Google Scholar
Huang Y, Wang L, Bennette B, Williams RW, Wang YJ, Gu WK, Jiao Y. Potential role of Atp5g3 in epigenetic regulation of alcohol preference or obesity from a mouse genomic perspective. Genet Mol Res. 2013;12(3):3662–74. .
CAS
PubMed
PubMed Central
Google Scholar
Li HS, Zhang JY, Thompson BS, Deng XY, Ford ME, Wood PG, Stolz DB, Eagon PK, Whitcomb DC. Rat mitochondrial ATP synthase ATP5G3: cloning and upregulation in pancreas after chronic ethanol feeding. Physiol Genom. 2001;6(2):91–8. .
CAS
Google Scholar
Lan D, Hu Y, Zhu Q, Liu Y. Mitochondrial DNA study in domestic chicken. Mitochondrial Dna. 2015;28(1):25–9.
PubMed
Google Scholar
Lu WW, Hou LL, Zhang WW, Zhang PF, Huang Y. Study on heteroplasmic variation and the effect of chicken mitochondrial ND2. Mitochondrial DNA A DNA Mapp Seq Anal. 2014;27(4):1–7. .
Google Scholar
Feng S, Xiong L, Ji Z, Cheng W, Yang H. Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. Mol Med Rep. 2012;6(1):125–30. .
CAS
PubMed
Google Scholar
Chen X, He XY, Zhu C, Zhang Y, Li Z, Liu Y, Zhang Y, Yin T, Li Y. Interaction between mitochondrial NADH dehydrogenase subunit-2 5178 C > A and clinical risk factors on the susceptibility of essential hypertension in Chinese population. BMC Med Genet. 2019;20(1):121.
PubMed
PubMed Central
Google Scholar
Huang Y-J, Jan Y-H, Chang Y-C, Tsai H-F, Hsiao M. ATP Synthase Subunit Epsilon Overexpression Promotes Metastasis by Modulating AMPK Signaling to Induce Epithelial-to-Mesenchymal Transition and Is a Poor Prognostic Marker in Colorectal Cancer Patients. J Clin Med. 2019;8(7):1070. .
CAS
PubMed Central
Google Scholar
Kidd T. The ε-Subunit of Mitochondrial ATP Synthase Is Required for Normal Spindle Orientation During the Drosophila Embryonic Divisions. Genetics. 2005;170(2):697–708.
CAS
PubMed
PubMed Central
Google Scholar
Vives-Bauza C, Magrane J, Andreu AL, Manfredi G. Novel Role of ATPase Subunit C Targeting Peptides Beyond Mitochondrial Protein Import. Mol Biol Cell. 2010;21(1):131–9. .
CAS
PubMed
PubMed Central
Google Scholar
Hu Y, Chen X, Lin H, Hu Y, Mu X. Study on the antiendotoxin action of Pulsatillae Decoction using an Affymetrix rat genome array. Cell Immunol. 2009;257(1–2):32–7. .
CAS
PubMed
Google Scholar
Hou W, Hou YL, Ding X, Wang T. cDNA, genomic sequence cloning and overexpression of giant panda (Ailuropoda melanoleuca) mitochondrial ATP synthase ATP5G1. Genet Mol Res. 2012;11(3):3164–74. .
CAS
PubMed
Google Scholar
Das AM. Regulation of the mitochondrial ATP-synthase in health and disease. Mol Genet Metab. 2003;79(2):71–82. .
CAS
PubMed
Google Scholar
Anna DG, Cecilia L, Cecilia S. Evolution of ATP synthase subunit c and cytochrome c gene families in selected Metazoan classes. Gene. 2006;371(2):224–33.
Google Scholar
Andersson U, Houstek J. B. ATP synthase subunit c expression: Physiological regulation of the P1 and P2 genes. Biochem J. 1997;323(2):379–85. .
CAS
PubMed
PubMed Central
Google Scholar
Seth R, Keeley J, Abu-Ali G, Crook S, Jackson D, Ilyas M. The putative tumour modifier gene ATP5A1 is not mutated in human colorectal cancer cell lines but expression levels correlate with TP53 mutations and chromosomal instability. J Clin Pathol. 2009;62(7):598–603. .
CAS
PubMed
Google Scholar
Kloetzel PM. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat Immunol. 2004;5(7):661–9. .
CAS
PubMed
Google Scholar
Preckel T, Fung-Leung WP, Cai Z, Vitiello A, Salter-Cid L, Winqvist O, Wolfe TG, Herrath M, Von,, Angulo A, Ghazal P. Impaired immunoproteasome assembly and immune responses in PA28-/- mice. Science. 1999;286(5447):2162–5.
Soza A, Knuehl C, Groettrup M, Henklein P, Tanaka K, Kloetzel PM. Expression and subcellular localization of mouse 20S proteasome activator complex PA28. Febs Letters. 1997;413(1):27–34.
CAS
PubMed
Google Scholar
Tanahashi N, Murakami Y, Minami Y, Shimbara N, Hendil KB, Tanaka K. Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J Biol Chem. 2000;275(19):14336–45. .
CAS
PubMed
Google Scholar
Huang YP, Chang NW. PPARα modulates gene expression profiles of mitochondrial energy metabolism in oral tumorigenesis. Biomedicine. 2016;6(1):1–6.
Google Scholar
Xia W, Wan Y, Li Y, Zeng H, Lv Z, Li G, Wei Z, Xu S. PFOS prenatal exposure induce mitochondrial injury and gene expression change in hearts of weaned SD rats. Toxicology. 2011;282(1):23–9.
CAS
PubMed
Google Scholar
Hurtado-López LM, Fernández-Ramírez F, Martínez-Peñafiel E, Ruiz JDC, González NEH. Molecular Analysis by Gene Expression of Mitochondrial ATPase Subunits in Papillary Thyroid Cancer: Is ATP5E Transcript a Possible Early Tumor Marker? Med Sci Monit. 2015;21:1745–51. .
PubMed
PubMed Central
Google Scholar
Fink IR, Forlenza M, Pietretti D, Wiegertjes GF. Facing the Challenge of a Functional Characterazation of Toll-like Receptor (TLR)1 and TLR2 in Common Carp. Fish Shellfish Immunol. 2016;53:70–83. .
Google Scholar
Fukui A, Inoue N, Matsumoto M, Nomura M, Yamada K, Matsuda Y, Toyoshima K, Seya T. Molecular cloning and functional characterization of chicken toll-like receptors. A single chicken toll covers multiple molecular patterns. J Biol Chem. 2001;276(50):47143–9. .
CAS
PubMed
Google Scholar
Iqbal M, Philbin VJ, Smith AL. Expression patterns of chicken Toll-like receptor mRNA in tissues, immune cell subsets and cell lines. Vet Immunol Immunopathol. 2005;104(1):117–27.
CAS
PubMed
Google Scholar
Boyd A, Philbin VJ, Smith AL. Conserved and distinct aspects of the avian Toll-like receptor (TLR) system: implications for transmission and control of bird-borne zoonoses. Biochem Soc Transact. 2007;35(Pt 6):1504–7. .
CAS
Google Scholar
Higuchi M, Matsuo A, Shingai M, Shida K, Ishii A, Funami K, Suzuki Y, Oshiumi H, Matsumoto M, Seya T. Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken Toll-like receptor 2 subfamily. Dev Comp Immunol. 2008;32(2):147–55. .
CAS
PubMed
Google Scholar
Nang NT, Lee JS, Song BM, Kang YM, Kim HS, Seo SH. Induction of inflammatory cytokines and Toll-like receptors in chickens infected with avian H9N2 influenza virus. Vet Res. 2011;42(1):64. .
CAS
PubMed
PubMed Central
Google Scholar
Mackinnon KM, He H, Nerren JR, Swaggerty CL, Genovese KJ, Kogut MH. Expression profile of toll-like receptors within the gastrointestinal tract of 2-day-old Salmonella enteriditis-infected broiler chickens. Vet Microbiol. 2009;137(3):313–9. .
CAS
PubMed
Google Scholar
Thome M, Tschopp J. Bcl10. Current Biology Cb. 2002;12(2):R45.
CAS
PubMed
Google Scholar
Donghai W, Yun Y, Pei-Chun L, Liquan X, Morris SW, Hu Z, Renren W, Xin L. Bcl10 plays a critical role in NF-kappaB activation induced by G protein-coupled receptors. Proc Natl Acad Sci USA. 2007;104(1):145–50. .
Google Scholar
Wang X, Wang L, Zhang H, Ji Q, Song L, Qiu L, Zhou Z, Wang M, Wang L. Immune response and energy metabolism of Chlamys farreri under Vibrio anguillarum challenge and high temperature exposure. Fish Shellfish Immunol. 2012;33(4):1016–26. .
CAS
PubMed
Google Scholar
Wu G, Qi Y, Liu X, Yang N, Xu G, Liu L, Li X. Cecal MicroRNAome response to Salmonella enterica serovar Enteritidis infection in White Leghorn Layer. Bmc Genomics. 2017;18(1):1–13.
Google Scholar
Herath HMLPB, Elvitigala DAS, Godahewa GI, Umasuthan N, Whang I, Noh JK, Lee J. Molecular characterization and comparative expression analysis of two teleostean pro-inflammatory cytokines, IL-1β and IL-8, from Sebastes schlegeli. Gene. 2016;575(2):732–42.
CAS
PubMed
Google Scholar
Hung LH, Li HP, Lien YY, Wu ML, Chaung HC. Adjuvant effects of chicken interleukin-18 in avian Newcastle disease vaccine. Vaccine. 2010;28(5):1148–55.
CAS
PubMed
Google Scholar
Zhang KL, Xie ZX, Huang L, Xie LJ, Liu JB, Deng XW, Xie ZQ, Fan Q, Luo SS. Quantitative detection of IL-18 in immune organs of SPF chicken infected by Avian reovirus. J Southern Agric. 2015;82:134–42. .
Google Scholar
Sumit B, Alip B, Nitika P, Dudeja PK, Tobacman JK. Bcl10 mediates LPS-induced activation of NF-kappaB and IL-8 in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2007;293(2):G429. .
Google Scholar
Gomes A, Sengupta J, Datta P, Ghosh S, Gomes A. Physiological Interactions of Nanoparticles in Energy Metabolism, Immune Function and Their Biosafety: A Review. J Nanosci Nanotechnol. 2016;16(1):92–116.
CAS
PubMed
Google Scholar
Lochmiller RL, Deerenberg C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos. 2000;88(1):87–98.
Google Scholar
Adamo SA. How should behavioural ecologists interpret measurements of immunity. Anim Behav. 2004;68(6):1443–9. .
Google Scholar
Das S, Palai TK, Mishra SR, Das D, Jena B. Nutrition in Relation to Diseases and Heat stress in Poultry. Vet World. 2011;4(9):429–32. .
Google Scholar
Demas GE. The energetics of immunity: a neuroendocrine link between energy balance and immune function. Horm Behav. 2004;45(3):173–80. .
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.
CAS
Google Scholar