Halliwell R. Revised nomenclature for veterinary allergy. Vet Immunol Immunopathol. 2006;114:207–8.
Article
PubMed
Google Scholar
Favrot C. Canine and human atopic dermatitis: similarities and differences. In: Planet@risk, 2(3), special issue on one health (part I/II): 160–161. Davos: Global Risk Forum. Davos; 2014. p. 160–1.
Google Scholar
Marsella R, Girolomoni G. Canine models of atopic dermatitis: a useful tool with untapped potential. J Invest Dermatol. 2009;129(10):2351–7.
Article
CAS
PubMed
Google Scholar
Marsella R, Olivry T, Nicklin C, Lopez J. Pilot investigation of a model for canine atopic dermatitis: environmental house dust mite challenge of high-IgE-producing beagles, mite hypersensitive dogs with atopic dermatitis and normal dogs. Vet Dermatol. 2006;17(1):24–35.
Article
PubMed
Google Scholar
Madison KC. Barrier function of the skin: “la raison d’être” of the epidermis. J Invest Dermatol. 2003;121(2):231–41.
Article
CAS
PubMed
Google Scholar
Mizutani Y, Mitsutake S, Tsuji K, Kihara A, Igarashi Y. Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie. 2009;91(6):784–90.
Article
CAS
PubMed
Google Scholar
Olivry T. Is the skin barrier abnormal in dogs with atopic dermatitis? Vet Immunol Immunopathol. 2011;144(1–2):11–6.
Article
CAS
PubMed
Google Scholar
Cui L, Jia Y, Cheng Z-W, Gao Y, Zhang G-L, Li J-Y, et al Advancements in the maintenance of skin barrier/skin lipid composition and the involvement of metabolic enzymes. J Cosmet Dermatol 2016;0:1–10.
Elias PM, Hatano Y, Williams ML. Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms. J Allergy Clin Immunol. 2008;121(6):1337–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fartasch M, Bassukas ID, Diepgen TL. Disturbed extruding mechanism of lamellar bodies in dry non-eczematous skin of atopics. Br J Dermatol. 1992;127(3):221–7.
Article
CAS
PubMed
Google Scholar
Hara J, Higuchi K, Okamoto R, Kawashima M, Imokawa G. High-expression of sphingomyelin deacylase is an important determinant of ceramide deficiency leading to barrier disruption in atopic dermatitis. J Invest Dermatol. 2000;115(3):406–13.
Article
CAS
PubMed
Google Scholar
Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A. Decreased level of Ceramides in stratum Corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol. 1991;96(4):523–6.
Article
CAS
PubMed
Google Scholar
Pilgram GS, Vissers DC, van der Meulen H, Pavel S, Lavrijsen SP, Bouwstra JA, et al. Aberrant lipid organization in stratum corneum of patients with atopic dermatitis and lamellar ichthyosis. J Invest Dermatol. 2001;117(3):710–7.
Article
CAS
PubMed
Google Scholar
Proksch E, Jensen JM, Elias PM. Skin lipids and epidermal differentiation in atopic dermatitis. Clin Dermatol. 2003;21(2):134–44.
Article
PubMed
Google Scholar
Saridomichelakis MN, Olivry T. An update on the treatment of canine atopic dermatitis. Vet J. 2016;207:29–37.
Article
CAS
PubMed
Google Scholar
Popa I, Thuy LH, Colsch B, Pin D, Gatto H, Haftek M, et al. Analysis of free and protein-bound ceramides by tape stripping of stratum corneum from dogs. Arch Dermatol Res. 2010;302(9):639–44.
Article
CAS
PubMed
Google Scholar
Inman A, Olivry T, Dunston S, Monteiro-Riviere N, Gatto H. Electron microscopic observations of stratum corneum intercellular lipids in normal and atopic dogs. Vet Pathol Online. 2001;38(6):720–3.
Article
CAS
Google Scholar
Reiter L, Torres S, Wertz P. Characterization and quantification of ceramides in the nonlesional skin of canine patients with atopic dermatitis compared with controls. Vet Dermatol. 2009;20(4):260–6.
Article
PubMed
Google Scholar
Santoro D, Marsella R, Pucheu-Haston CM, Eisenschenk MNC, Nuttall T, Bizikova P. Review: pathogenesis of canine atopic dermatitis: skin barrier and host-micro-organism interaction. Vet Dermatol. 2015;26(2):84–e25.
Article
PubMed
Google Scholar
Shimada K, Yoon J. Increased transepidermal water loss and decreased ceramide content in lesional and non-lesional skin of dogs with atopic dermatitis. Vet Dermatol. 2009;20:541–6.
Article
PubMed
Google Scholar
Marsella R, Genovese D, Gilmer L, Ahrens K, Gatto H, Navarro C. Investigations on the effects of a topical ceramides-containing emulsion (Allerderm spot on) on clinical signs and skin barrier function in dogs with atopic dermatitis: a double-blinded randomized controlled study. Int J Appl Res Vet Med. 2013;11(2):110–6.
CAS
Google Scholar
Blaskovic M, Rosenkrantz W, Neuber A, Sauter-Louis C, Mueller RS. The effect of a spot-on formulation containing polyunsaturated fatty acids and essential oils on dogs with atopic dermatitis. Vet J. 2014;199:39–43.
Article
CAS
PubMed
Google Scholar
Tretter S, Mueller R. The influence of topical unsaturated fatty acids and essential oils on normal and atopic dogs. J Am Anim Hosp Assoc. 2011;47(4):236–40.
Article
PubMed
Google Scholar
Bourdeau P, Bruet V, Gremillet C. Evaluation of phytosphingosine-containing shampoo and microemulsion spray in the clinical control of allergic dermatoses in dogs: preliminary results of a multicentre study. In: Selected abstracts from the North American Veterinary Dermatology Forum, 18–22 April, Lihue, Kauai, Hawaii, USA. 2007. p. 175–95.
Fujimura M, Nakatsuji Y, Fujiwara S, Rème C, Gatto H. Spot-on skin lipid complex as an adjunct therapy in dogs with atopic dermatitis: an open pilot study. Vet Med Int. 2011;2011:1–6.
Article
Google Scholar
Hobi S, Klinger C, Classen J, Mueller RS. The effects of a topical lipid complex therapy on dogs with atopic dermatitis: a double blind, randomized, placebo-controlled study. Vet Dermatol. 2017;28(4):369–e84.
Article
PubMed
Google Scholar
Jung J, Nam E, Park S, Han S, Hwang C. Clinical use of a ceramide-based moisturizer for treating dogs with atopic dermatitis. J Vet Sci. 2013;14(2):199–205.
Article
PubMed
PubMed Central
Google Scholar
Olivry T, DeBoer D. Treatment of canine atopic dermatitis: 2015 updated guidelines from the international committee on allergic diseases of animals (ICADA). BMC Vet Res. 2015;11(210):1–15.
CAS
Google Scholar
Piekutowska A, Pin D, Rème CA, Gatto H, Haftek M. Effects of a topically applied preparation of epidermal lipids on the stratum corneum barrier of atopic dogs. J Comp Pathol. 2008;138(4):197–203.
Article
CAS
PubMed
Google Scholar
Popa I, Remoue N, Osta B, Pin D, Gatto H, Haftek M, et al. The lipid alterations in the stratum corneum of dogs with atopic dermatitis are alleviated by topical application of a sphingolipid-containing emulsion. Clin Exp Dermatol. 2012;37:665–71.
Article
CAS
PubMed
Google Scholar
Reme CA, Mondon A, Calmon JP, Poisson L, Jasmin P, Carlotti DN. FC-40 efficacy of combined topical therapy with antiallergic shampoo and lotion for the control of signs associated with atopic dermatitis in dogs. Vet Dermatol. 2004;15(s1):33.
Article
Google Scholar
Cerrato S, Ramió-Lluch L, Brazís P, Fondevila D, Segarra S, Puigdemont A. Effects of sphingolipid extracts on the morphological structure and lipid profile in an in vitro model of canine skin. Vet J. 2016;212:58–64.
Article
CAS
PubMed
Google Scholar
Serra M, Brazís P, Puigdemont A, Fondevila D, Romano V, Torre C, et al. Development and characterization of a canine skin equivalent. Exp Dermatol. 2007;16:135–42.
Article
PubMed
Google Scholar
Cerrato S, Ramió-Lluch L, Brazís P, Segarra S, Puigdemont A. Abstracts from the 8th world congress of veterinary dermatology, may 31 - June 4 2016, Bordeaux, France. Vet Dermatol. 2016;27(Suppl 1):6–121.
Google Scholar
Balogh L, Polyak A, Mathe D, Kiraly R, Thuroczy J, Terez M, et al. Absorption, uptake and tissue affinity of high-molecular-weight hyaluronan after oral administration in rats and dogs. J Agric Food Chem. 2008;56(22):10582–93.
Article
CAS
PubMed
Google Scholar
Smith MM, Melrose J. Proteoglycans in Normal and healing skin. Adv Wound Care. 2013;4(3):152–73.
Article
Google Scholar
Torrent A, Montell E, Verges J, Ruhi R, Dalmau P, Zurbano MJ, et al. A New Natural Extract with Anti-Aging and Regenerative Properties for Skin. FASEB J. 2015;29(1_Supplement):740–3.
Google Scholar
Draelos ZD. A clinical evaluation of the comparable efficacy of hyaluronic acid-based foam and ceramide-containing emulsion cream in the treatment of mild-to-moderate atopic dermatitis. J Cosmet Dermatol. 2011;10(3):185–8.
Article
PubMed
Google Scholar
Frankel A, Sohn A, Patel RV, Lebwohl M. Bilateral comparison study of pimecrolimus cream 1% and a ceramide-hyaluronic acid emollient foam in the treatment of patients with atopic dermatitis. J Drugs Dermatol. 2011;10(6):666–72.
CAS
PubMed
Google Scholar
Malaisse J, Bourguignon V, De Vuyst E, Lambert de Rouvroit C, Nikkels AF, Flamion B, et al. Hyaluronan metabolism in human keratinocytes and atopic dermatitis skin is driven by a balance of hyaluronan synthases 1 and 3. J Invest Dermatol. 2014;134:2174–82.
Article
CAS
PubMed
Google Scholar
Pacha O, Hebert AA. Treating atopic dermatitis: safety, efficacy, and patient acceptability of a ceramide hyaluronic acid emollient foam. Vol. 5, Clinical, Cosmetic and Investigational Dermatology. 2012. p. 39–42.
Taub A, Garretson C. An open label study evaluating a hyaluronic acideceramide based prescription emollient foam in the treatment of mild to moderate eczema. J Drugs Dermatol. 2011;10(6):666–72.
Google Scholar
Segarra S, Bernard F-X, Flores J, Naiken T. Effects of sphingolipids, glycosaminoglycans, and their combination on in vitro filaggrin expression using reconstructed human epidermis. In: Abstracts of the 30th Annual Congress of the ECVD-ESVD, Dubrovnik, Croatia. Vet Dermatol. 2018;29(5):372.
Borodzicz S, Rudnicka L, Mirowska-Guzel D, Cudnoch-Jedrzejewska A. The role of epidermal sphingolipids in dermatologic diseases. Lipids Health Dis. 2016;15(1):13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Griffin C, DeBoer D. The ACVD task force on canine atopic dermatitis (XIV): clinical manifestations of canine atopic dermatitis. Vet Immunol Immunopathol. 2001;81(3–4):255–69.
Article
CAS
PubMed
Google Scholar
Lau-Gillard PJ, Hill PB, Chesney CJ, Budleigh C, Immonen A. Evaluation of a hand-held evaporimeter (VapoMeter®) for the measurement of transepidermal water loss in healthy dogs. Vet Dermatol. 2010;21(2):136–45.
Article
PubMed
Google Scholar
Shimada K, Yoshihara T, Yamamoto M, Konno K, Momoi Y, Nishifuji K, et al. Transepidermal water loss (TEWL) reflects skin barrier function of dog. J Vet Med Sci. 2008;70(8):841–3.
Article
PubMed
Google Scholar
Yoon J, Nishifuji K, Sasaki A, Ide K, Ishikawa J, Yoshihara T, et al. Alteration of stratum corneum ceramide profiles in spontaneous canine model of atopic dermatitis. Exp Dermatol. 2011;20(9):732–6.
Article
CAS
PubMed
Google Scholar
Sperling P, Heinz E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta - Mol Cell Biol Lipids. 2003;1632(1–3):1–15.
Article
CAS
Google Scholar
Calder P. Abnormal fatty acid profiles occur in atopic dermatitis but what do they mean? Clin Exp Allergy. 2006;36:138–41.
Article
CAS
PubMed
Google Scholar
Olivry T, Marsella R, Hillier A. The ACVD task force on canine atopic dermatitis (XXIII): are essential fatty acids effective? Vet Immunol Immunopathol. 2001;81(3–4):347–62.
Article
CAS
PubMed
Google Scholar
Olivry T, Bizikova P. A systematic review of randomized controlled trials for prevention or treatment of atopic dermatitis in dogs: 2008–2011 update. Vet Dermatol. 2013;24(1):97–117.e25–6.
Berardesca E, Maibach HI. Transepidermal water loss and skin surface hydration in the non invasive assessment of stratum corneum function. Derm Beruf Umwelt. 1990;38(2):50–3.
CAS
PubMed
Google Scholar
Hill PB, Lau P, Rybnicek J. Development of an owner-assessed scale to measure the severity of pruritus in dogs. Vet Dermatol. 2007;18(5):301–8.
Article
CAS
PubMed
Google Scholar
Røpke MA, Alonso C, Jung S, Norsgaard H, Richter C, Darvin ME, et al. Effects of glucocorticoids on stratum corneum lipids and function in human skin—a detailed lipidomic analysis. J Dermatol Sci. 2017;88(3):330–8.
Article
CAS
PubMed
Google Scholar
Martínez-Arranz I, Mayo R, Pérez-cormenzana M, Mincholé I, Salazar L, Alonso C, et al. Data in brief data in support of enhancing metabolomics research through data mining. J Proteome. 2015;3:155–64.
Google Scholar