Skip to main content

Seroprevalence of antibodies for bovine viral diarrhoea virus, Brucella abortus and Neospora caninum, and their roles in the incidence of abortion/foetal loss in dairy cattle herds in Nakuru District, Kenya



No comprehensive studies have been carried out on the infectious causes of abortion in Kenyan dairy cattle herds. A survey was carried out to determine the seroprevalence of antibodies against Bovine Viral Diarrhoea Virus (BVDV), Brucella abortus (BA) and Neospora caninum (NC) among dairy cattle herds in Nakuru County, a major dairying area in Kenya. A prospective sero-epidemiological study was also undertaken to investigate the effects of BVDV, BA and NC on the occurrence of bovine abortion in dairy cattle herds, where monthly rectal palpations for pregnancy were performed, and monthly serum samples were tested for antibodies to the 3 pathogens.


In the 398 randomly selected cattle on 64 dairy herds, the seroprevalences of antibodies to BVDV, NC and BA were 79.1, 25.6 and 16.8%, respectively. Of the cattle seropositive to NC, 83.3% were also seropositive to BVDV and 13.7% to BA. Of the cattle seropositive to BVDV, 17.1% were also seropositive to BA. Among 260 monitored pregnant dairy cattle on the same 64 dairy farms, an incidence risk for abortion of 10.8% (28/260) was identified, while the incidence of other foetal losses was 1.1% (3/260). The incidence rates of sero-conversion for NC, BVD and BA were 1.1, 0.06 and 0.5 new infections/100 cow-months at risk, respectively. The foetal losses were mainly observed in animals less than 96 months old and occurred in mid-gestation. Neospora caninum was associated with most cases (29.0%) of foetal losses, followed by mixed infections of NC and BVDV (12.9%), BVDV (9.9%) and co-infections of BA and NC (6.5%).


This is the first study to document the substantial incidence risk of BVDV and NC abortions in dairy cattle in Kenya, and demonstrates the relative importance of BA, BVDV and NC infections in dairy cattle in Kenya. Kenya laboratories should offer diagnostic tests for BVDV and NC to help farmers determine their roles in abortions on their farms. A comprehensive policy on the control of these important diseases should also be put in place by government with the involvement of all stakeholders in the dairy cattle industry.


Animal production systems are dependent on successful reproduction that leads to survival of a conceptus to subsequent reproduction [1]. While high fertilization rates of up to 90% have been reported, up to 65% of embryos are estimated to be lost before term, leading to significant economic losses and biological waste to the animal industry [2].

Some of the important infectious agents that have been reported to cause prenatal losses in cattle are Bovine Viral Diarrhoea Virus (BVDV), Brucella abortus, Neospora caninum, Campylobacter foetus, Chlamydophila abortus, Escherichia coli, infectious bovine rhinotracheitis virus, Leptospira spp., Salmonella spp., Rift Valley fever virus, and Toxoplasma gondii, as well as several fungal species, such as Absidia spp. and Aspergillus spp. [1, 3,4,5,6,7,8].

The diagnostic rate in bovine abortions is very low due to the diverse range of pathogens involved, as well as the fact that other factors affecting the dam, foetus and placenta may be involved [3]. Abortion also can follow an initial infection which may have gone on for several weeks or months; the aetiology of an abortion may not be detectable by the time the abortion occurs. The high cost of laboratory work for each pathogen also compounds the problem of under-diagnosis of abortions, with positive diagnostic rates of 17 and 43% having been reported in British and American dairy cattle herds, respectively [4, 5].

Reports on prenatal loss and pathogens that can cause abortion in Kenya are available; Leptospira and Campylobacter have been confirmed to occur [9,10,11,12]. A review of the records at Nakuru Regional Veterinary Investigation Laboratory (NVIL) revealed that between January 1997 and October 2007, 1182 cases of abortion were reported. Only 124 (10.4%) were positively identified as brucellosis while the rest (89.6%) had no definitive diagnosis. The other causes remained unknown, hence, interventions were difficult to institute to reduce the problem. Therefore, there is an urgent need for research to address causes of bovine abortion in Kenya and their associated risk factors.

Factors that have been reported to increase the risk of abortion in dairy cattle herds include: being a heifer; being an old cow (more than 10 years old); feeding on communal pastures; lack of vaccination against abortifacient diseases; and reproductive problems such as retained placentae, dystocia, uterine prolapse and stillbirth in the previous pregnancies [13, 14]. However, no studies have looked at risk factors of abortion from Bovine Viral Diarrhoea Virus, Brucella abortus and Neospora caninum simultaneously in a Kenyan context.

This study was designed to determine the seroprevalence of infections with BVDV, BA and NC, and the incidence risk of abortion/foetal loss caused by these 3 pathogens in dairy cattle herds in Kenya.


Of the 64 participating herds, grazing at 63.1% (251/398) was the most common method of rearing dairy cattle in this study, with the remainder being zero-grazed. The level of vaccination against reproductive diseases in dairy cattle selected for this study was low. Only 7 (1.8%) and 4 (1.0%) cattle had been vaccinated against brucellosis and BVD, respectively. All these vaccinations had been done in animals at one farm.

For the 398 cattle in the survey, 242 (60.8%) were from small-scale farms, while 156 (39.2%) were from large-scale farms. Friesians were the most common breed encountered, comprising 68.1% (271) of the selected animals. The rest of the breeds were Ayrshire at 18.1% (72/398), Guernsey at 6.0% (24/398), Jersey at 5.5% (22/398), and Sahiwal at 2.0% (8/398), and 1 cow (0.25%) was a crossbred cow of unclear breed.

About age, 178 (44.7%) were 49–96 months old, 132 (33.2%) were 13–48 months old, 84 (21.1%) were more than 96 months old and 4 (1.0%) were between 6 and 12 months old. The parity of the selected animals ranged from 0 to 9. The mean parity was 3.1 with a standard deviation of 2.1, and median of 3. Fifty-seven (14.3%) animals had not calved before.

Regarding breeding, 280 (70.4%) cattle were bred by artificial insemination using imported semen, 85 (21.4%) were bred by artificial insemination using local semen, and only 1 (0.4%) had received embryo transfer. Of the 398 animals sampled for the prevalence survey, 32 (8.0%) had never been bred yet.

Among the 398 cattle that were included in the prevalence study, BVDV had the highest seroprevalence at 79.1% (95% CI = 75.2–83.0%). The seroprevalence of NC was 26.0% (95% CI = 21.6–29.6%) while that of BA was 16.8% (95% CI = 13.2–20.4%).

Eighty-five (83.3%) of the 102 dairy cattle that were seropositive to NC were also seropositive to BVDV, and 14 (13.7%) were also seropositive to BA. In addition, of the 315 dairy cattle seropositive to BVDV, 54 (17.1%) were also seropositive to BA.

In the prospective study, of the 260 animals monitored, 31 (11.9%) experienced reproductive wastage; the incidence of abortion was 10.8% (28/260), while the incidence of early embryonic death, deformed foetus at term and foetal mummification was 0.4% (1/260) for each condition.

Of the three infections under investigation as causes of abortion/foetal loss, a solo infection with NC was associated with the most foetal losses at 29.0% (9/31), followed by mixed infections with NC and BVDV at 12.9% (4/31). Table 1 shows other combinations of infections, including BA and NC mixed infections which led to 6.5% of the foetal losses (2/31). Ten (32.3%) of the 31 cases of foetal loss were not associated with any of the three infections under investigation. The animal that had foetal mummification had a four-fold increase in antibody titres to BVDV, while the animal that had a deformed foetus had a four-fold increase in antibody titres to NC and BVDV. The single case of EED was not associated with any infection.

Table 1 Distribution of infections associated with foetal loss (n = 31) in 260 dairy cattle in Nakuru District, Kenya, 2010–2011

Eighty percent of the foetal losses occurred between 4 and 7 months of gestation. The gestation details are shown in Table 2.

Table 2 Stage of gestation of foetal loss (n = 31) in 260 dairy cattle in Nakuru District, Kenya in 2010–2011

On the unconditional regression analyses, factors significantly associated with the occurrence of foetal loss were: being of young age (P = 0.02, OR = 1.4), Friesian breed (P = 0.04, OR = 1.93), parity< 3 (P = 0.01, OR = 2.9), and being bred using artificial insemination with imported semen (P = 0.05, OR = 2.1). In the results of the multivariable regression analysis, no models contained more than one significant variable.


This is the first study to document the substantial incidence risk of foetal loss due to BVDV and NC in dairy cattle in Kenya, and demonstrates the relative importance of BA, BVDV and NC infections in dairy cattle in Kenya. Kenyan veterinary laboratories should offer diagnostic tests for BVDV and NC to help farmers determine their roles in abortions on their farms.

In this study, all three pathogens were associated with substantial reproductive wastage. While BVDV was the most common abortifacient pathogen in this study population, NC was associated with the most foetal losses (29.0% by itself). NC has been shown to be one of the most common causes of foetal loss elsewhere, responsible for 3.9–69% of all diagnosed abortions in dairy cattle herds [5, 15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]. Most BVDV abortions occur when previously unexposed dams are infected during gestation [30, 31]. Thus, with the high prevalence rates of BVDV in this study, most BVDV-infected animals may have been previously exposed and recovered, leading to the low rates of abortion/foetal loss attributable to this pathogen. Previous studies have tried to investigate interrelationship between BVDV and NC as causes of abortion/foetal loss [32]. In our study, co-infection by BVDV and NC led to 12.9% of the foetal losses.

Positive diagnostic rates for foetal loss of 67.7% were achieved. This was much higher than rates of between 17 and 56.3% that have been reported in previous studies [4, 5, 29]. This high rate of positive diagnosis may have been because the animals selected into the study were closely monitored until the foetal loss occurred. Samples had therefore been collected prior to the foetal loss and after, thus increasing the chances of diagnosis. All the other reports were based on samples collected after the foetal loss. By this time, it is not easy to detect the aetiology since infection normally precedes foetal loss by weeks or months [4, 5].

Several infections, such as BA and BVDV, have been reported to be transmitted through the use of artificial insemination [33]. In this study, the frequency of abortions was significantly higher in dairy cattle bred by artificial insemination using imported semen relative to those AI bred using local semen. Most of the animals bred using imported semen were on breeder farms who had high traffic of cattle buyers/traders particularly in-calf heifers. In addition, the poor biosecurity measures seen on most farms in this study may have led to increased chances of transmission of some of these pathogens, such as BVDV, by animal health providers, as has been reported in previous studies [34].

Neospora caninum was the pathogen most associated with foetal loss in our study. Abortions in cattle due to NC have been reported to occur commonly from 5 to 6 months of gestation [6]; this may be the reason why 80% of the abortions/foetal loss in this study were recorded during the period from 4 to 7 months of gestation. Cases of foetal loss were also more common in young and middle-aged dairy cattle. Indeed, no dairy cattle more than 96 months old (n = 84) had abortion or any foetal loss, which may be because younger animals are naive to most abortifacient pathogens, thus making them more likely to contract these infections and subsequently abort. In addition, NC was involved in nearly 50% of the abortions, and its vertical transmission often leads to abortions in younger cattle [30]. In fact, the age of the dam was the only statistically significant risk factor to the occurrence of bovine abortion in this study, although with only 31 cases of foetal loss, the power to detect significance of the differences was limited.

The main limitations of our study were the failure to recover aborted foetuses as well as placental tissue, which would have helped to enhance the diagnosis of the actual causes of abortion. Farmers and animal health providers should be informed on the importance of submitting these samples in cases of abortion.

Further studies should be carried out to assess whether the abortifacient pathogens herein studied influence the milk production in dairy cows from Kenya as well as their economic impact in the dairy cattle industry of this country. Other abortifacient pathogens in cattle could also be investigated, such as leptospirosis and infectious bovine rhinotracheitis virus.


We found a substantial incidence risk of BVDV and NC abortions in dairy cattle in Kenya. The seroprevalences of BA, BVDV and NC infections were relatively high in the tested dairy cattle in Kenya, especially BVDV and NC. Kenya laboratories should offer diagnostic tests for BVDV and NC to help farmers determine their roles in abortions on their farms. A comprehensive policy on the control of these important diseases should also be put in place by government with the involvement of all stakeholders in the dairy cattle industry.


This study was carried out in Nakuru County, Kenya. It is one of the main dairy farming zones in Kenya and is also the main catchment area for dairy cattle breeding stock in Kenya and the East African region. The dairy cattle population in this area ranges from 100,000-120,000, most of which are large herds on large-scale farms. Though Nakuru is a large-scale farming district in terms of land area, with many large-scale farms averaging 1100 acres, many small-scale farms with average sizes of between 0.3–10 acres do exist [31,32,33].

Study farms and animals and data collection for the survey

This phase of the study was carried out between January and May 2010. A list of more than 300 dairy cattle farms was collected from the local animal production office and dairy societies (the sampling frame), and divided into small- and large-scale farms, with large-scale farms having > 30 dairy cattle and small-scale farms having ≤29 cattle. A stratified random sampling procedure was used: 50 farms having < 29 dairy cattle and 20 farms having > 30 dairy cattle were randomly selected into the study. Herd sample size was determined based on the number of farms that could logistically and financially be handled for the study. Of the 70 farms, 64 agreed to participate.

For the prevalence survey, blood samples were collected from 398 randomly selected dairy cattle (pregnant and non-pregnant; over 6 months old) of the estimated 200,000 dairy cattle on the participating farms, based on the following formula

$$ n=\frac{4\times \mathrm{P}\left(1-\mathrm{P}\right)}{L^2} $$

where: n = sample size, L = Precision (0.15) and P = incidence risk estimate (25%), using 95% confidence levels [35].

These selected cattle were restrained in a crush, and the ventral aspect of the tail disinfected with ethyl alcohol-soaked cotton swabs. Vacutainer needles (BD Vacutainer® blood collection needle) and serum tubes (BD Vacutainer® blood collection tubes) with clot activator were used to collect the blood samples. The blood samples were centrifuged at 2500 rotations per minute for 15 min, and serum was separated and frozen at -20 °C until all samples were collected, at which time, laboratory tests were conducted.

Data collection on the participating farms and cattle was conducted through a face-to-face interview with the farm owner or manager, obtaining information on cattle age, breed, parity, and breeding at the cow level, and at grazing and vaccination practices at the herd level.

Study farms and animals and data collection for the prospective study

This phase of the study was carried out between January 2010 and May 2011. On monthly visits to the same 64 farms, 279 dairy cattle that were confirmed pregnant by rectal palpation (40–60 days post service) were selected for the prospective study. However, 19 dairy cattle were lost to follow-up due to sales of the animals from the farms, leaving 260 pregnant cows for the analyses.

Rectal palpation was performed monthly to test for continued pregnancy in cows, and blood samples were collected monthly until the cow calved or the pregnancy was lost (abortion/EED/mummification). The time of pregnancy loss was when the foetal loss was detected, by the veterinarian through rectal palpations and/or by farmers finding a foetus or vulvar foetal membranes, and the date of an abortion was estimated retrospectively.

Again, blood samples were centrifuged, and serum was separated and frozen at -20 °C until all samples were collected, at which time, laboratory tests were conducted. Data collection on the participating cows was again conducted through a face-to-face interview with the farm owner or manager.

Laboratory analyses

For the survey, commercial Enzyme-Linked Immunosorbent Assays (ELISA) were used to screen for antibodies against bovine viral diarrhoea virus, Neospora caninum and Brucella abortus antibodies (IDEXX Laboratories, Switzerland AG). For the prospective study, the same blood testing was done monthly to monitor changes in antibody titres (to BVDV, Brucella abortus and Neospora caninum). This method of analysis was selected due to its high sensitivity and specifity as well as its ability to test large numbers of samples at one time. The intra- and inter-test variability was minimized by using the same laboratory and technologist to perform all the testing.

Statistical analysis

Data from the serological survey and prospective study were entered and stored in Microsoft Office Excel 2007 (Microsoft Corporation, 2007). The data were imported into Genstat® 13th edition, service pack two, for analysis (VSN international).

Descriptive statistics, including prevalence and incidence risk, were computed for the serological survey and abortion parameters. To calculate cause-specific incidence risks of abortion, monthly antibody levels to BVDV, BA and NC were examined from samples before and after the reported abortions, with a four-fold increase in a titre for a specific pathogen indicating the likely aetiology of the abortion by that pathogen [36].

While the purpose of the study was not to identify risk factors to foetal loss, we did conduct Pearson’s Chi-square tests to determine significant differences in dichotomous predictor variables between outcome groups (e.g. those that aborted versus those that didn’t abort). Multivariable logistic regression was carried out to model the incidence risk of abortion in dairy cattle in Nakuru County, and odds ratios, as a measure of strength of association between the significant model variables (P < 0.05) and the outcome, foetal loss, were calculated. The backward elimination procedure was used for regression, and factors that were significant (P < 0.05) were retained in the final model. Potential clustering of animals within farms was controlled for by including farm as a random effect in the modelling.



Brucella abortus


Bovine Viral Diarrhoea Virus


Early Embryonic Death


Enzyme-Linked Immunosorbent Assays


Neospora caninum


Nakuru District Development Plan


Nakuru Regional Veterinary Investigation Laboratory


Odds ratio


  1. 1.

    Vanroose G, de Kruif A, Van Soom A. Embryonic mortality and embryo-pathogen interactions. Anim Reprod Sci. 2000;2:131–43.

    Article  Google Scholar 

  2. 2.

    Arthur GH, Noakes DE, Pearson H, Parkinson TJ. Abnormal development of the conceptus and its consequences. In: Veterinary reproduction and obstetrics. London: W.B. Saunders Co; 1999. p. 110–9.

    Google Scholar 

  3. 3.

    Radostits OM, Leslie KE, Fetrow J. Textbook of herd health; food animal production medicine. 2nd ed. Philadelphia, PA: W.B. Saunders; 1994.

    Google Scholar 

  4. 4.

    Carpenter TE, Chrie’l M, Andersen M, Wulfson L, Jensen A, Houe H, Greiner M. An epidemiologic study of late-term abortions in dairy cattle in Denmark, July 2000–august 2003. Prev Vet Med. 2006;77:215–29.

    Article  Google Scholar 

  5. 5.

    Murray RD. Practical approach to infectious bovine abortion diagnosis. In: Proceedings of the 24th world Buiatrics conference. France: Nice. p. 2006.

  6. 6.

    Stahl K, Bjorkman C, Emanuelson U, Rivera H, Zelada A, Moreno- Lopez J. A prospective study on the effect of Neospora caninum and BVDV on bovine abortions in a dairy herd in Arequipa, Peru. Prev Vet Med. 2006;75:177–88.

    CAS  Article  Google Scholar 

  7. 7.

    Nuotio L, Neuvonen E, Hyytiäinen M. Epidemiology and eradication of infectious bovine rhinotracheitis/infectious pustular vulvovaginitis (IBR/IPV) virus in Finland. Acta Vet Scand. 2007;49(3).

  8. 8.

    Asmare K, Regassa F, Robertson LJ, Skjerve E. Seroprevalence of Neospora caninum and associated risk factors in intensive or semi-intensively managed dairy and breeding cattle of Ethiopia. Vet Parasitol. 2013;193:85–94.

    CAS  Article  Google Scholar 

  9. 9.

    Agumbah GJ. Bovine genital campylobacteriosis in Kenya. A field study of the biotypes and an experimental evaluation of the role of coitus in the transmission of the intestinal biotype. M.Sc. thesis. University of Nairobi. 1977.

  10. 10.

    De Souza CF. Occurrence of bovine leptospirosis in Kenya. M.Sc. thesis. University of Nairobi. 1982.

  11. 11.

    Macharia SM. A comparative sero-epidemiological survey for the presence of Leptospira antibodies in domestic animals and man in Nyandarua and Turkana districts of Kenya. M.Sc. Thesis. University of Nairobi. 1989.

  12. 12.

    Odima AP. Reproductive performance of dairy cows and heifers in Kiambu District, Kenya. M.Sc. Thesis. University of Nairobi. 1994.

  13. 13.

    Waldner CL, García G. Cow attributes, herd management, and reproductive history events associated with the risk of non-pregnancy in cow-calf herds in Western Canada. Theriogenology. 2013;79:1083–94.

    CAS  Article  Google Scholar 

  14. 14.

    Waldner CL. Cow attributes, herd management, and reproductive history events associated with abortion in cow-calf herds from Western Canada. Theriogenology. 2014;81:840–8.

    CAS  Article  Google Scholar 

  15. 15.

    Romero JJ, Perez E, Dolz G, Frankena K. Factors associated with Neospora caninum sero-status in cattle of 20 specialised Costa Rican dairy herds. Prev Vet Med. 2002:263–73.

  16. 16.

    Boger AL, Hattel AL. Additional evaluation of undiagnosed bovine abortion cases may reveal foetal neosporosis. Vet Parasitol. 2003;113:1–6.

    Article  Google Scholar 

  17. 17.

    Frossling J, Bonnet B, Lindberg A, Bjorkman C. Validation of a Neospora caninum iscom ELISA without a gold standard. Prev Vet Med. 2003;57:141–53.

    Article  Google Scholar 

  18. 18.

    Canada N, Carvalheira J, Meireles CS, da Costa JMC, Rocha A. Prevalence of Neospora caninum infection in dairy cows and its consequences for reproductive management. Theriogenology. 2004;62:1229–35.

    Article  Google Scholar 

  19. 19.

    Waldner CL. Serological status for N. caninum, bovine viral diarrhoea virus, and infectious bovine rhinotracheitis virus at pregnancy testing and reproductive performance in beef herds. Anim Reprod Sci. 2005;90:219–42.

    CAS  Article  Google Scholar 

  20. 20.

    Dubey JP, Schares G. Diagnosis of bovine neosporosis. Vet Parasitol. 2006;140:1–34.

    CAS  Article  Google Scholar 

  21. 21.

    Fernandez E, Arna’iz-Seco I, Burgos M, Rodriguez-Bertos A, Aduriz G, Ferna’ndez-Garcı’a A, Ortega-Mora L. Comparison of Neospora caninum distribution, parasite loads and lesions between epidemic and endemic bovine abortion cases. Vet Parasitol. 2006;142:187–91.

    Article  Google Scholar 

  22. 22.

    Paradies P, Capelli G, Testini G, Cantacessi C, Trees AJ, Otranto D. Risk factors for canine neosporosis in farm and kennel dogs in southern Italy. Vet Parasitol. 2007;145:240–4.

    Article  Google Scholar 

  23. 23.

    Silva D, Lobato J, Mineo T, Mineo J. Evaluation of serological tests for the diagnosis of Neospora caninum infection in dogs: optimization of cut off titers and inhibition studies of cross-reactivity with toxoplasma gondii. Vet Parasitol. 2007;143:234–44.

    Article  Google Scholar 

  24. 24.

    Yang N, Cui X, Qian W, Yu S, Liu Q. Survey of nine abortifacient infectious agents in aborted bovine foetuses from dairy farms in Beijing, China, by PCR. Acta Vet Hung. 2012;60:83–92.

    Article  Google Scholar 

  25. 25.

    Grooms DL. Reproductive consequences of infection with bovine viral diarrhoea virus. Vet Clin North Am - Food Anim Pract. 2004;20:5–19.

    Article  Google Scholar 

  26. 26.

    Lanyon SR, Anderson ML, Reichel MP. Pooling serum to identify cohorts of non-milking cattle likely to be infected with bovine viral Diarrhoea virus by testing for specific antibodies. J Vet Diagn Investig. 2014;26:346–53.

    Article  Google Scholar 

  27. 27.

    Konnai S, Mingala CN, Sato M, Abes NS, Venturina FA, Gutierrez CA, Ohashi K. A survey of abortifacient infectious agents in livestock in Luzon, the Philippines, with emphasis on the situation in a cattle herd with abortion problems. Acta Trop. 2008;105:269–73.

    Article  Google Scholar 

  28. 28.

    Eaglesome MD, Garcia MM. Disease risks to animal health from artificial insemination with bovine semen. Review in Science and Technology. 1997;16:215–25.

    CAS  Article  Google Scholar 

  29. 29.

    Presi P, Struchen R, Knight–Jones T, Schall S, Heim D. Bovine viral diarrhoea eradication in Switzerland -experience of the first 2 years. Prev Vet Med. 2011;99:112–21.

    Article  Google Scholar 

  30. 30.

    Schares G, Peters M, Wurm R, Barwald A, Conraths FJ. The efficiency of vertical transmission of Neospora caninum in dairy cattle analysed by serological techniques. Vet Parasitol. 1998;80:87–98.

    CAS  Article  Google Scholar 

  31. 31.

    Nakuru district development plan (N.D.D.P.) 2002–2008 ministry of planning and national development. 2001.

  32. 32.

    Economic Survey. Kenya National Bureau of statistics. Ministry of Planning and National Development 2007.

  33. 33.

    Statistical abstract. Kenya National Bureau of statistics. In: Ministry of Planning and National Development; 2007.

    Google Scholar 

  34. 34.

    Dohoo I, Martin W and Stryne H. Veterinary Epidemiologic Research. VER Inc., Berkley Way, Charlottetown, Prince Edward Island. 2009.

  35. 35.

    Garc’ıa-Vázquez Z, Cruz-Vázquez C, Medina-Espinoza L, Garc’ıa-Tapia D, Chavarria-Martinez B. Serological survey of Neospora caninum infection in dairy cattle herds in Aguascalientes, Mexico. Vet Parasitol. 2002;106:115–20.

    Article  Google Scholar 

  36. 36.

    Václavek P, Koudelaa B, Modrýa D, Sedlák K. Seroprevalence of Neospora caninum in aborting dairy cattle in the Czech Republic. Vet Parasitol. 2003;115:239–45.

    Article  Google Scholar 

Download references


We thank the staff at the Biochemistry Lab of the Department of Clinical Studies who assisted in the laboratory analysis of samples, and IDEXX Laboratories who donated the ELISA test kits used in the study.


This work was supported by the funding from the International Foundation for Science (IFS) grant number B4721–1. They provided the funds as well as monitoring and evaluation of the project.

Availability of data and materials

These are available from the corresponding author upon reasonable request.

Author information




TAO conducted the field and laboratory work. In addition, he participated in the study design, did the data analysis and preparation of this manuscript. JNM, JWJ, VT, and JVL were involved in the conception of the study, study design and the writing of this manuscript. JVL participated in some of the field work and data analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tequiero Abuom Okumu.

Ethics declarations

Ethics approval and consent to participate

Approval for this study was given by the Faculty of Veterinary Medicine Postgraduate committee of the University of Nairobi. Informed consent was received from all the willing participating farmers and farm managers. Since the information collected for this study was not of a sensitive nature, and the procedures performed on the animals being minimally invasive (rectal palpation and collection of blood samples from the coccygeal vein), the consent received from the Faculty of Veterinary Medicine Postgraduate committee was deemed sufficient when reference is made to the Prevention of Cruelty to Animals Act. In addition, at the time of the study, this committee was the only committee in the University of Nairobi mandated to give approval for research in animals.

With regards to the cattle used in this study, all of them were privately owned by individual farmers or institutions. Only farmers/farms willing to participate in the study were recruited after giving informed written consent, after the objectives as well as the potential benefits of performing this study to the Kenyan dairy industry were explained to them in detail.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okumu, T.A., John, N.M., Wabacha, J.K. et al. Seroprevalence of antibodies for bovine viral diarrhoea virus, Brucella abortus and Neospora caninum, and their roles in the incidence of abortion/foetal loss in dairy cattle herds in Nakuru District, Kenya. BMC Vet Res 15, 95 (2019).

Download citation


  • Abortion
  • Dairy cattle
  • Neospora caninum
  • Bovine viral Diarrhoea virus
  • Brucella abortus