Korvick DL, Pijanowski GJ, Schaeffer DJ. Three-dimensional kinematics of the intact and cranial cruciate ligament-deficient stifle of dogs. J Biomech. 1994;27:77–87.
Article
CAS
PubMed
Google Scholar
Tashman S, Anderst W, Kolowich P, Havstad S, Arnoczky S. Kinematics of the ACL-deficient canine knee during gait: serial changes over two years. J Ortho Res. 2004;22:931–41.
Article
Google Scholar
Kim S, Lewis D, Pozzi A. Effect of tibial plateau leveling osteotomy on femorotibial subluxation: in vivo analysis during standing. Vet Surg. 2012;41:465–70.
Article
PubMed
Google Scholar
Skinner OT, Kim SE, Lewis DD, Pozzi A. In vivo femorotibial subluxation during weight-bearing and clinical outcome following tibial tuberosity advancement for cranial cruciate ligament insufficiency in dogs. Vet J. 2013;196:86–91.
Article
CAS
PubMed
Google Scholar
Tinga S, Kim SE, Banks SA, Jones SC, Park B, Pozzi A, Lewis DD. In vivo kinematics of the cranial cruciate ligament deficient femorotibial joint during walking. Vet Comp Orthop Traumatol. 2014;27:A8
Innes J, Shepstone L, Holder J, Barr A, Dieppe P. Changes in the canine femoropatellar joint space in the postsurgical, cruciate-deficient stifle joint. Vet Rad & Ultrasound. 2002;43:241–8.
Article
CAS
Google Scholar
Innes J, Costello M, Barr F, Rudorf H, Barr A. Radiographic progression of osteoarthritis of the canine stifle joint: a prospective study. Vet Rad & Ultrasound. 2004;45:143–8.
Article
CAS
Google Scholar
Voss K, Damur D, Guerrero T, Haessig M, Montavon P. Force plate gait analysis to assess limb function after tibial tuberosity advancement in dogs with cranial cruciate ligament disease. Vet Comp Orthop Traumatol. 2008;21:243–9.
CAS
PubMed
Google Scholar
Agnello K, Holsworth I, Caceras A, Brown D, Runge J, Schlicksup M, Hayashi K. Articular cartilage lesions of the patellofemoral joint in dogs with naturally occurring cranial cruciate ligament disease. Vet Surg. 2014;43:308–15.
Article
PubMed
Google Scholar
Culvenor A, Cook J, Collins N, Crossley K. Is patellofemoral joint osteoarthritis an under-recognised outcome of anterior cruciate ligament reconstruction? A narrative literature review. Br J Sports Med. 2013;47:66–70.
Article
PubMed
Google Scholar
Mattern K, Berry C, Peck J, De Haan J. Radiographic and ultrasonographic evaluation of the patellar ligament following tibial plateau leveling osteotomy. Vet Rad & Ultrasound. 2006;47:185–91.
Article
Google Scholar
Rutherford S, Bell J, Ness M. Fracture of the patella after TPLO in 6 dogs. Vet Surg. 2012;41:869–75.
Article
PubMed
Google Scholar
Griffin T, Guilak F. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc Sport Sci Rev. 2005;33:195–200.
Article
PubMed
Google Scholar
Andriacchi T, Mundermann A, Smith R, Alexander E, Dyrby C, Koo S. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng. 2004;32:447–57.
Article
PubMed
Google Scholar
Andriacchi T, Favre J. The nature of in vivo mechanical signals that influence cartilage health and progression to knee osteoarthritis. Curr Rheumatol Rep. 2014;16:1–8.
Article
Google Scholar
Guerrero T, Pozzi A, Dunbar N, Kipfer N, Haessig M, Horodyski M, Montavon P. Effect of tibial tuberosity advancement on the contact mechanics and the alignment of the patellofemoral and femorotibial joints. Vet Surg. 2011;40:839–48.
PubMed
Google Scholar
Pozzi A, Dunbar N, Kim SE. Effect of tibial plateau leveling osteotomy on patellofemoral alignment: a study using canine cadavers. Vet J. 2013;198:98–102.
Article
PubMed
Google Scholar
Banks SA, Hodge WA. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng. 1996;43:638–49.
Article
CAS
PubMed
Google Scholar
Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Ortho and Related Res. 2003;410:69–81.
Article
Google Scholar
Fregly BJ, Rahman HA, Banks SA. Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy. J Biomech Eng. 2005;127:692–9.
Article
PubMed
PubMed Central
Google Scholar
Hamai S, Dunbar N, Moro-oka T, Miura H, Iwamoto Y, Banks S. Physiological sagittal plane patellar kinematics during dynamic deep knee flexion. Int Orthop. 2013;37:1477–82.
Article
PubMed
PubMed Central
Google Scholar
Jones SC, Kim SE, Banks SA, Conrad BP, Abbasi AZ, Tremolada G, Lewis DD, Pozzi A. Accuracy of noninvasive, single-plane fluoroscopic analysis for measurement of three-dimensional femorotibial joint poses in dogs. Am J Vet Res. 2014;75:477–85.
Article
PubMed
Google Scholar
Moore E, Kim SE, Banks SA, Pozzi A, Coggeshall J, Jones SC. Normal patellofemoral kinematic patterns during daily activities in dogs. BMC Vet Res. 2016;12:262.
Article
PubMed
PubMed Central
Google Scholar
Slocum B, Slocum T. Tibial plateau leveling osteotomy for repair of cranial cruciate ligament rupture in the canine. Vet Clin N Am-Small. 1993;23:777–95.
Article
CAS
Google Scholar
Vilensky JA, O'Connor BL, Brandt KD, Dunn EA, Rogers PI. Serial kinematic analysis of the trunk and limb joints after anterior cruciate ligament transection: temporal, spatial, and angular changes in a canine model of osteoarthritis. J Electromyogr Kinesiol. 1994;4:181–92.
Article
CAS
PubMed
Google Scholar
Nelson SA, Krotscheck U, Rawlinson J, Todhunter RJ, Zhang Z, Mohammed H. Long-term functional outcome of tibial plateau leveling osteotomy versus extracapsular repair in a heterogenous population of dogs. Vet Surg. 2013;42:38–50.
Article
PubMed
Google Scholar
Papadonikolakis A, Cooper L, Stergiou N, Georgoulis A, Soucacos P. Compensatory mechanisms in anterior cruciate ligament deficiency. Knee Surg Sports Traumatol Arthrosc. 2003;11:235–43.
Article
PubMed
Google Scholar
Kim SE, Jones SC, Lewis DD, Banks SA, Conrad BP, Tremolada G, Abbasi AZ, Coggeshall JD, Pozzi A. In-vivo three-dimensional knee kinematics during daily activities in dogs. J Orthop Res. 2015;33:1603–10.
Article
PubMed
Google Scholar
Shin C, Carpenter R, Majumdar S, Ma C. Three-dimensional in vivo patellofemoral kinematics and contact area of anterior cruciate ligament-deficient and -reconstructed subjects using magnetic resonance imaging. Arthroscopy. 2009;25:1214–23.
Article
PubMed
Google Scholar
Van de Velde S, Gill T, DeFrate L, Papannagari R, Li G. The effect of anterior cruciate ligament deficiency and reconstruction on the patellofemoral joint. Am J Sports Med. 2008;36:1150–9.
Article
PubMed
PubMed Central
Google Scholar