Van S,PJ. Nutritional Ecology of the Ruminant. 2nded. Ithaca, New York: Cornell University Press; 1994.
Google Scholar
Lenz RW, Ball GD, Leibfried ML, Ax RL, First NL. In vitro maturation and fertilization of bovine oocytes are temperature-dependent processes. Biol Reprod. 1983;29:173–9.
Article
CAS
PubMed
Google Scholar
Flint, Harry J, Sylvia H Duncan, Karen P Scott, and Petra Louis. 2007. “Interactions and competition within the microbial Community of the Human Colon: links between diet and health.” Environ Microbiol 9 (5): 1101–1111. doi:10.1111/j.1462-2920.2007.01281.x.
Morrison M, Pope PB, Denman SE, McSweeney CS. Plant biomass degradation by gut microbiomes: more of the same or something new? Curr Opin Biotechnol. 2009;20(3):358–63. doi:10.1016/j.copbio.2009.05.004.
Article
CAS
PubMed
Google Scholar
Frey JC, Pell AN, Berthiaume R, Lapierre H, Lee S, Ha JK, Mendell JE, Angert ER. Comparative studies of microbial populations in the rumen, duodenum, ileum and Faeces of lactating dairy cows. J Appl Microbiol. 2010;108(6):1982–93. doi:10.1111/j.1365-2672.2009.04602.x.
CAS
PubMed
Google Scholar
Hobson, P.N., and C.S. Stewart. 1997. The rumen microbial ecosystem. Edited by P.N. Hobson and C.S. Stewart. Second. New York: Blackie Academic & Professional.
Henderson G, Cox F, Ganesh S, Jonker A, Young W, Abecia L, Angarita E, et al. Rumen microbial community composition varies with diet and host, but a Core microbiome is found across a wide geographical range. Sci Rep. 2015;5(April):14567. doi:10.1038/srep14567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hook, Sarah E, André-Denis G Wright, and Brian W McBride. 2010. “Methanogens: Methane Producers of the Rumen and Mitigation Strategies.” Archaea (Vancouver, B.C.) 2010 (January): 945785. doi:10.1155/2010/945785.
Janssen PH, Kirs M. Structure of the archaeal Community of the Rumen. Appl Environ Microbiol. 2008;74(12):3619–25. doi:10.1128/AEM.02812-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh KM, Pandya PR, Parnerkar S, Tripathi AK, Rank DN, Kothari RK, Joshi CG. Molecular identification of methanogenic Archae from Surti buffaloes (Bubalus Bubalis), reveals more Hydrogenotrophic methanogens Phylotypes. Braz J Microbiol. 2011;42:132–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Devillard E, Goodheart DB, Karnati SKR, Bayer EA, Lamed R, Miron J, Karen E, Morrison M, Nelson KE. Ruminococcus Albus 8 mutants defective in cellulose degradation are deficient in two Processive Endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J Bacteriol. 2004;186(1):136–45. doi:10.1128/JB.186.1.136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrison M, Miron J. Adhesion to cellulose by Ruminococcus Albus: a combination of Cellulosomes and Pil-proteins? FEMS Microbiol Lett. 2000;185(2):109–15.
Article
CAS
PubMed
Google Scholar
Suen G, Stevenson DM, Bruce DC, Chertkov O, Copeland A, Cheng J-F, Detter C, et al. Complete genome of the cellulolytic ruminal bacterium Ruminococcus Albus 7. J Bacteriol. 2011;193(19):5574–5. doi:10.1128/JB.05621-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chistoserdova L, Jenkins C, Kalyuzhnaya MG, Marx CJ, Lapidus A, Vorholt JA, Staley JT, Lidstrom ME. The enigmatic Planctomycetes may hold a key to the origins of Methanogenesis and Methylotrophy. Mol Biol Evol. 2004;21(7):1234.
Article
CAS
PubMed
Google Scholar
Forano E, Delort A-M, Matulova M. Carbohydrate metabolism in Fibrobacter succinogenes : what NMR tells us. Microb Ecol Health Dis. 2008;20(2):94–102. doi:10.1080/08910600802106517.
Article
CAS
Google Scholar
Jiao J, Lu Q, Tan Z, Guan L, Zhou C, Tang S, Han X. In vitro evaluation of effects of gut region and fiber structure on the intestinal dominant bacterial diversity and functional bacterial species. Anaerobe. 2014;28(August):168–77. doi:10.1016/j.anaerobe.2014.06.008.
Article
CAS
PubMed
Google Scholar
Marx H, Graf AB, Tatto NE, Thallinger GG, Mattanovich D, Sauer M. Genome sequence of the ruminal bacterium Megasphaera Elsdenii. J Bacteriol. 2011;193(19):5578–9. doi:10.1128/JB.05861-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asplund, J.M. 1994. Principles of protein nutrition of ruminants. Edited by J.M. Asplund. First. Boca Raton, Florida: CRC Press.
Stevens CE, Hume ID. Comparative Physiology of the Vertebrate Digestive System. 2nded. Cambridge: Cambridge University Press; 1995.
Google Scholar
Stevens CE, Hume ID. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol Rev. 1998;78(2):393–427.
CAS
PubMed
Google Scholar
Rosenvinge, Erik C Von, Yang Song, James R White, Cynthia Maddox, Thomas Blanchard, and W Florian Fricke. 2013. “Immune Status, Antibiotic Medication and pH Are Associated with Changes in the Stomach Fluid Microbiota.” The ISME Journal 7 (7). Nature Publishing Group: 1354–66. doi:10.1038/ismej.2013.33.
Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K. Development of a real-time PCR method for Firmicutes and Bacteroidetes in Faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol. 2008;47(5):367–73. doi:10.1111/j.1472-765X.2008.02408.x.
Article
CAS
PubMed
Google Scholar
Ozutsumi Y, Hayashi H, Sakamoto M, Itabashi H, Benno Y. Culture-independent analysis of fecal microbiota in cattle. Biosci Biotechnol Biochem. 2005;69(9):1793–7.
Article
CAS
PubMed
Google Scholar
Patton TG, Scupham AJ, Bearson SMD, Carlson SA. Characterization of fecal microbiota from a salmonella endemic cattle herd as determined by oligonucleotide fingerprinting of rDNA genes. Vet Microbiol. 2009;136(3–4):285–92. doi:10.1016/j.vetmic.2008.10.032.
Article
CAS
PubMed
Google Scholar
Shanks OC, Kelty CA, Archibeque S, Jenkins M, Newton RJ, McLellan SL, Huse SM, Sogin ML. Community structures of fecal bacteria in cattle from different animal feeding operations. Appl Environ Microbiol. 2011;77(9):2992–3001. doi:10.1128/AEM.02988-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thoetkiattikul H, Mhuantong W, Laothanachareon T, Tangphatsornruang S, Pattarajinda V, Eurwilaichitr L, Champreda V. Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Curr Microbiol. 2013;67(2):130–7. doi:10.1007/s00284-013-0336-3.
Article
CAS
PubMed
Google Scholar
Ishaq SL, Wright A-DG. Insight into the bacterial gut microbiome of the north American moose (Alces Alces). BMC Microbiol. 2012;12(212):1–12. doi:10.1128/AEM.71.12.8228-8235.2005.
Google Scholar
Dougal K, de la Fuente G, Harris P a, Girdwood SE, Pinloche E, Jamie Newbold C. Identification of a Core bacterial community within the large intestine of the horse. PLoS One. 2013;8(10):e77660. doi:10.1371/journal.pone.0077660.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohl, Kevin D, Aaron W Miller, James E Marvin, Roderick Mackie, and M Denise Dearing. 2014. “Herbivorous Rodents (Neotoma Spp.) Harbour Abundant and Active Foregut Microbiota.” Environmental Microbiology, December. doi:10.1111/1462–2920.12376.
Wang M, Ahrné S, Jeppsson B, Molin G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol. 2005;54(2):219–31. doi:10.1016/j.femsec.2005.03.012.
Article
CAS
PubMed
Google Scholar
Towne G, Nagaraja TG, Cochran RC. Ruminal microbial populations and fermentation characteristics in bison and cattle fed high- and low-quality forage. Microb Ecol. 1989;17(3):311–6. doi:10.1007/BF02012843.
Article
CAS
PubMed
Google Scholar
Towne G, Nagaraja TG, Cochran RC, Harmon DL, Owensby CE, Kaufman DW. Comparisons of ruminal fermentation characteristics and microbial populations in bison and Cattlet. Appl Environ Microbiol. 1988;54(10):2510–4.
CAS
PubMed
PubMed Central
Google Scholar
Varel VH, Dehority BA. Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets. Appl Environ Microbiol. 1989;55(1):148–53.
CAS
PubMed
PubMed Central
Google Scholar
Weese JS, Shury T, Jelinski MD. The fecal microbiota of semi-free-ranging wood bison (bison bison Athabascae). BMC Vet Res. 2014;10(January):120. doi:10.1186/1746-6148-10-120.
Article
PubMed
PubMed Central
Google Scholar
Lauber CL, Strickland MS, Bradford MA, Fierer N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem. 2008;40(9):2407–15. doi:10.1016/j.soilbio.2008.05.021.
Article
CAS
Google Scholar
Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75(15):5111–20. doi:10.1128/AEM.00335-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu, Zongzhi, Catherine Lozupone, Micah Hamady, Frederic D Bushman, and Rob Knight. 2007. “Short pyrosequencing reads suffice for accurate microbial community analysis.” Nucleic Acids Res 35 (18): e120. doi:10.1093/nar/gkm541.
Bergmann, Gaddy T, Scott T Bates, Kathryn G Eilers, Christian L Lauber, J Gregory Caporaso, William A Walters, Rob Knight, and Noah Fierer. 2011. “The under-Recognized Dominance of Verrucomicrobia in Soil Bacterial Communities.” Soil Biology & Biochemistry 43 (7). Elsevier Ltd: 1450–1455. doi:10.1016/j.soilbio.2011.03.012.
Caporaso JG, Lauber CL, Walters W a, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. June: Proceedings of the National Academy of Sciences of the United States of America; 2011. p. 1–7. doi:10.1073/pnas.1000080107.
Google Scholar
Werner, Jeffrey J, Omry Koren, Philip Hugenholtz, Todd Z DeSantis, William A Walters, J Gregory Caporaso, Largus T Angenent, Rob Knight, and Ruth E Ley. 2012. “Impact of Training Sets on Classification of High-Throughput Bacterial 16s rRNA Gene Surveys.” The ISME Journal 6 (1). Nature Publishing Group: 94–103. doi:10.1038/ismej.2011.82.
Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM. The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res. 2007;35(Database issue):D169–72. doi:10.1093/nar/gkl889.
Article
CAS
PubMed
Google Scholar
Clarke KR, Gorley RN. PRIMER v6: user manual/tutorial. Plymouth, England: PRIMER-E; 2006.
Google Scholar
Development Core Team R. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014.
Google Scholar
Oliveira MNV de, Jewell KA, Freitas FS, Benjamin LA, Totola MR, Borges AC, Moraes CA, Suen G. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Vet Microbiol. 2013;164(3–4):307–14. doi:10.1016/j.vetmic.2013.02.013.
Article
PubMed
Google Scholar
Romero-Pérez GA, Ominski KH, McAllister T a, Krause DO. Effect of environmental factors and influence of rumen and hindgut biogeography on bacterial communities in steers. Appl Environ Microbiol. 2011;77(1):258–68. doi:10.1128/AEM.01289-09.
Article
PubMed
Google Scholar
Neumann LM, Dehority B a. An investigation of the relationship between fecal and rumen bacterial concentrations in sheep. Zoo Biology. 2008;27(2):100–8. doi:10.1002/zoo.20166.
Article
PubMed
Google Scholar
Ishaq, Suzanne L., and André-Denis Wright. 2014. “High-Throughput DNA Sequencing of the Ruminal Bacteria from Moose (Alces alces) in Vermont, Alaska, and Norway.” Microbial Ecology 68 (2). Springer US: 185–195. doi:10.1007/s00248-014-0399-0.
Ley, Ruth E, Micah Hamady, Catherine Lozupone, Peter J Turnbaugh, Rob Roy Ramey, J Stephen Bircher, Michael L Schlegel, et al. 2008. “Evolution of Mammals and Their Gut Microbes.” Science (New York, N.Y.) 320 (5883): 1647–51. doi:10.1126/science.1155725.
Ley RE, Lozupone C a, Hamady M, Knight R, Gordon JI. Worlds within Worlds: Evolution of the Vertebrate Gut Microbiota. Nature Reviews. Microbiology. 2008;6(10):776–88. doi:10.1038/nrmicro1978.
Article
CAS
PubMed
PubMed Central
Google Scholar
Filippo C, De D, Cavalieri MDP, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci. 2010;107(33):14691–6. doi:10.1073/pnas.1005963107.
Article
PubMed
PubMed Central
Google Scholar
Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI. Diet Drives Convergence in Gut Microbiome Functions across Mammalian Phylogeny and within Humans. Science (New York, N.Y.). 2011;332(6032):970–4. doi:10.1126/science.1198719.
Article
CAS
Google Scholar
Gerritsen J, Smidt H, Rijkers GT, de Vos WM. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 2011;6(3):209–40. doi:10.1007/s12263-011-0229-7.
Article
PubMed
PubMed Central
Google Scholar
Booijink CCGM, Zoetendal EG, Kleerebezem M, de Vos WM. Microbial communities in the human small intestine: coupling diversity to metagenomics. Future Microbiol. 2007;2(3):285–95. doi:10.2217/17460913.2.3.285.
Article
CAS
PubMed
Google Scholar
Booyse, Dirk G., and Burk a. Dehority. 2012. “Protozoa and Digestive Tract Parameters in Blue Wildebeest (Connochaetes taurinus) and Black Wildebeest (Connochaetes gnou), with Description of Entodinium Taurinus N. Sp.” European Journal of Protistology 48 (4). Elsevier GmbH: 283–289. doi:10.1016/j.ejop.2012.04.004.
Wheeler WE, Noller CH. Gastrointestinal tract pH and starch in feces of ruminants. J Anim Sci. 1977;44(1):131–5.
Article
CAS
PubMed
Google Scholar
Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman W. Bergey’s manual of systematic bacteriology: volume 3: the Firmicutes. In: Edited by P Vos, G Garrity, D Jones, NR Krieg, W Ludwig, FA Rainey, KH Schleifer, and W Whitman. Second: Springer New York; 2009.
Google Scholar
Kim M, Kim J, Kuehn LA, Bono JL, Berry ED, Kalchayanand N, Freetly HC, Benson K, Wells JE. Investigation of bacterial diversity in the feces of cattle fed different diets. J Anim Sci. 2014;92:683–94. doi:10.2527/jas2013-6841.
Article
CAS
PubMed
Google Scholar
Kumar, Sanjay, Nagaraju Indugu, Bonnie Vecchiarelli, and Dipti W Pitta. 2015. “Associative Patterns among Anaerobic Fungi, Methanogenic Archaea, and Bacterial Communities in Response to Changes in Diet and Age in the Rumen of Dairy Cows.” Frontiers in Microbiology 6. Frontiers Media SA: 781. doi:10.3389/fmicb.2015.00781.
Mooring M, Reisig D, Osborne E, Kanallakan A, Hall B, Schaad E, Wiseman D, Huber R. Sexual segregation in bison: a test of multiple hypotheses. Behaviour. 2005;142(7):897–927. doi:10.1163/1568539055010110.
Article
Google Scholar
Post, Diane M, Trent S Armbrust, Eva A Horne, Jacob R Goheen, and E V A A Horne. 2001. “Sexual segregation results in differences in content and quality of bison (Bos Bison) diets.” J Mammal 82 (2): 407–413.
Rosas CA, Engle DM, Shaw JH. Potential ecological impact of diet selectivity and bison herd composition. Great Plains Res. 2005;15(1):3–13.
Google Scholar
Bergmann GT, Craine JM, Robeson MS, Fierer N. Seasonal shifts in diet and gut microbiota of the American bison (bison bison). PLoS One. 2015;10(11):e0142409. doi:10.1371/journal.pone.0142409.
Article
PubMed
PubMed Central
Google Scholar
Belanche A, Doreau M, Edwards JE, Moorby JM, Pinloche E, Newbold CJ. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J Nutr. 2012;142(9):1684–92. doi:10.3945/jn.112.159574.
Article
CAS
PubMed
Google Scholar
Fernandes, Karlette A., Sandra Kittelmann, Christopher W. Rogers, Erica K. Gee, Charlotte F. Bolwell, Emma N. Bermingham, and David G. Thomas. 2014. “Faecal Microbiota of Forage-Fed Horses in New Zealand and the Population Dynamics of Microbial Communities Following Dietary Change.” Edited by Robert J. Forster. PLoS ONE 9 (11). Public Library of Science: e112846. doi:10.1371/journal.pone.0112846.
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. doi:10.1038/nature05414.
Article
PubMed
Google Scholar
Guo X, Xia X, Tang R, Wang K. Real-time PCR quantification of the predominant bacterial divisions in the distal gut of Meishan and landrace pigs. Anaerobe. 2008;14(4):224–8. doi:10.1016/j.anaerobe.2008.04.001.
Article
CAS
PubMed
Google Scholar
Costello, Elizabeth K, Jeffrey I Gordon, Stephen M Secor, and Rob Knight. 2010. “Postprandial Remodeling of the Gut Microbiota in Burmese Pythons.” The ISME Journal 4 (11). Nature Publishing Group: 1375–1385. doi:10.1038/ismej.2010.71.
Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G. Environmental and gut Bacteroidetes: the food connection. Front Microbiol. 2011;2(May):93. doi:10.3389/fmicb.2011.00093.
PubMed
PubMed Central
Google Scholar
Krause KM, Oetzel GR. Understanding and preventing subacute ruminal acidosis in dairy herds: a review. Anim Feed Sci Technol. 2006;126(3–4):215–36. doi:10.1016/j.anifeedsci.2005.08.004.
Article
CAS
Google Scholar
Nagaraja, T G, and E C Titgemeyer. 2007. “Ruminal Acidosis in Beef Cattle: The Current Microbiological and Nutritional Outlook.” Journal of Dairy Science 90 Suppl 1 (7). Elsevier: E17–38. doi:10.3168/jds.2006-478.
Plaizier JC, Krause DO, Gozho GN, McBride BW. Subacute Ruminal Acidosis in Dairy Cows: The Physiological Causes, Incidence and Consequences. Veterinary Journal (London, England), Elsevier Ltd. 2008, 1997;176(1):21–31. doi:10.1016/j.tvjl.2007.12.016.