Adams VJ, Evans KM, Sampson J, Wood JLN. Methods and mortality results of a health survey of purebred dogs in the UK. J Small Anim Pract. 2010;51:512–24.
Article
CAS
PubMed
Google Scholar
Bronson RT. Variation in age at death of dogs of different sexes and breeds. Am J Vet Res. 1982;43:2057–9.
CAS
PubMed
Google Scholar
Fleming JM, Creevy KE, Promislow DE. Mortality in North American dogs from 1984 to 2004: an investigation into age-, size-, and breed-related causes of death. J Vet Intern Med. 2011;25:187–98.
Article
CAS
PubMed
Google Scholar
Dobson JM. Breed-predispositions to cancer in pedigree dogs. ISRN Veterinary Science. 2013;2012:1–23.
Article
Google Scholar
Kelsey JL, Moore AS, Glickman LT. Epidemiologic studies of risk factors for cancer in pet dogs. Epidemiol Rev. 1998;20:2014–17.
Article
Google Scholar
Hume KR, Johnson JL, Williams LE. Adverse effects of concurrent carboplatin chemotherapy and radiation therapy in dogs. J Vet Intern Med. 2008;23:24–30.
Article
Google Scholar
Lana SE, Kogan LR, Crump KA, Graham JT, Robinson NG. The use of complementary and alternative therapies in dogs and cats with cancer. J Am Anim Hosp Assoc. 2006;42:361–5.
Article
PubMed
Google Scholar
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981–2010. J Nat Prod. 2012;75:311–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nobili S, Lippi D, Witort E, Donnini M, Bausi L, Mini E, Capaccioli S. Natural compounds for cancer treatment and prevention. Pharmacol Res. 2009;59(6):365–78.
Article
CAS
PubMed
Google Scholar
Yang CS, Landau JM, Huang M, Newmark HL. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr. 2001;21:381–406.
Article
CAS
PubMed
Google Scholar
Aggarwal BB, Takada Y, Oommen OV. From chemoprevention of chemotherapy: common targets and common goals. Expert Opin Investig Drugs. 2004;13:1327–38.
Article
CAS
PubMed
Google Scholar
González-Vallinas M, González-Castejón M, Rodríguez-Casado A, Ramírez de Molina A. Dietary phytochemicals in cancer prevention and therapy: a complementary approach with promising perspectives. Nutr Rev. 2013;71:585–99.
Article
PubMed
Google Scholar
Helmerick EC, Loftus JP, Wakshlag JJ. The effects of baicalein on canine osteosarcoma cell proliferation and death. Vet Comp Oncol. 2014;12:299–309.
Article
CAS
PubMed
Google Scholar
Wakshlag JJ, Balkman CE. Effects of lycopene on proliferation and death of canine osteosarcoma cells. Am J Vet Res. 2010;71:1362–70.
Article
CAS
PubMed
Google Scholar
Wakshlag JJ, Balkman CA, Morgan SK, McEntee MC. Evaluation of the protective effects of all-trans-astaxanthin on canine osteosarcoma cell lines. Am J Vet Res. 2010;71:89–96.
Article
CAS
PubMed
Google Scholar
Fresco P, Borges F, Diniz C, Marques MPM. New insights on the anticancer properties of dietary polyphenols. Med Res Rev. 2006;26:747–66.
Article
CAS
PubMed
Google Scholar
Potter JD. Cancer prevention: epidemiology and experiment. Cancer Lett. 1997;114:7–9.
Article
CAS
PubMed
Google Scholar
Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutritional Biochemistry. 2007;18:427–42.
Article
CAS
Google Scholar
Raghavan M, Knapp DW, Bonney PL, Dawson MH, Glickman LT. Evaluation of the effect of dietary vegetable consumption on reducing risk of transitional cell carcinoma of the urinary bladder in Scottish Terriers. JAVMA. 2005;227:94–100.
Article
CAS
PubMed
Google Scholar
Thomas R, Williams M, Sharma H, Chaudry A, Bellamy P. A double-blind, placebo-controlled randomized trial evaluating the effect of a polyphenol-rich whole food supplement on PSA progression in men with prostate cancer—the U.K. NCRN Pomi-T study. Prostate Cancer Prostatic Dis. 2014;17(2):180–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
He ZY, Shi CB, Wen H, Li FL, Wang BL, Wang J. Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Invest. 2011;29(3):208–13.
Article
CAS
PubMed
Google Scholar
Cruz-Correa M, Shoskes DA, Sanchez P, Zhao R, Hylind LM, Wexner SD, Giardiello FM. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin Gastroenterol Hepatol. 2006;4(8):1035–8.
Article
CAS
PubMed
Google Scholar
Gressmayr PC, Gauthier M, Barber LG, Cotter SM. Mushroom-derived maitake PETfraction as single agent for the treatment of lymphoma in dogs. J Vet Intern Med. 2007;21(6):1409–12.
Article
Google Scholar
Ogilvie GK, Fettman MJ, Mallinckrodt CH, Walton JA, Hansen RA, Davenport DJ, et al. Effect of fish oil, arginine, and doxorubicin chemotherapy on remission and survival time for dogs with lymphoma: a double-blind, randomized placebo-controlled study. Cancer. 2000;88:1916–28.
Article
CAS
PubMed
Google Scholar
Association of American Feed Control Officials, Inc. 2015 Official Publication. 2015.
Google Scholar
Vega-Avila E, Pugsley MK. An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc West Pharmacol Soc. 2011;54:10–4.
CAS
PubMed
Google Scholar
Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.
Article
CAS
PubMed
Google Scholar
Liu RH. Health-promoting components of fruits and vegetables in the diet. Adv Nutr. 2013;4 Suppl 3:384–92.
Article
Google Scholar
Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004;134 Suppl 12:3479–85.
Google Scholar
Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1 Suppl):230S–42S.
CAS
PubMed
Google Scholar
Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci. 2009;30:85–94.
Article
CAS
PubMed
Google Scholar
Shishu MM. Comparative bioavailability of curcumin, turmeric, and Biocurcumax™ in traditional vehicles using non-everted rat intestinal sac model. J Funct Foods. 2010;2:60–5.
Article
CAS
Google Scholar
Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269:199–225.
Article
CAS
PubMed
Google Scholar
Ravindran J, Prasad S, Aggarwal BB. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J. 2009;11:495–510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clinical Trials. US National Library of Medicine, Bethesda. 2000. https://clinicaltrials.gov/ct2/home. Accessed 02 June 2015.
Google Scholar
Lao CD, Ruffin 4th MT, Normolle D, Heath DD, Murray SI, Bailey JM, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6:10.
Article
PubMed
PubMed Central
Google Scholar
Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, et al. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res. 2001;7:1894–900.
CAS
PubMed
Google Scholar
Asai A, Miyazawa T. Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life Sci. 2000;67:2785–93.
Article
CAS
PubMed
Google Scholar
Holder GM, Plummer JL, Ryan AJ. The metabolism and excretion of curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat. Xenobiotica. 1978;8:761–8.
Article
CAS
PubMed
Google Scholar
Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr Pharm Des. 2013;19:2047–69.
CAS
PubMed
PubMed Central
Google Scholar
Storka A, Vcelar B, Klickovic U, Gouya G, Weisshaar S, Aschauer S, et al. Safety, tolerability and pharmacokinetics of liposomal curcumin in healthy humans. Int J Clin Pharmacol Ther. 2015;53:54–65.
Article
CAS
PubMed
Google Scholar
Kanai M, Imaizumi A, Otsuka Y, Sasaki H, Hashiguchi M, Tsujiko K, et al. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol. 2012;69:65–70.
Article
CAS
PubMed
Google Scholar
Patil UK, Singh A, Charkraborty AK. Role of piperine as a bioavailability enhancer. International Journal of Recent Advances in Pharmaceutical Research. 2011;4:16–23.
Google Scholar
Antony B, Merina B, Iyer VS, Judy N, Lennertz K, Joyal S. A pilot cross-over study to evaluate human oral bioavailability of BCM-95CG (Biocurcumax), a novel bioenhanced preparation of curcumin. Indian J Pharm Sci. 2008;70:445–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson JJ, Mukhtar H. Curcumin for chemoprevention of colon cancer. Cancer Lett. 2007;255:170–81.
Article
CAS
PubMed
Google Scholar
Innes JF, Fuller CJ, Grover ER, Kelly AL, Burn JF. Randomised, double-blind, placebo-controlled parallel group study of P54FP for the treatment of dogs with osteoarthritis. Vet Rec. 2003;152:457–60.
Article
CAS
PubMed
Google Scholar
Colitti M, Gaspardo B, Della Pria A, Scaini C, Stefanon B. Transcriptome modification of white blood cells after dietary administration of curcumin and non-steroidal anti-inflammatory drug in osteoarthritic affected dogs. Vet Immunol Immunopathol. 2012;147:136–46.
Article
CAS
PubMed
Google Scholar
Borrás Linares I, Stojanović Z, Quirantes-Piné R, Arráez-Román D, Švarc-Gajić J, Fernández-Gutiérrez A, Sequra-Carretero A. Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int J Mol Sci. 2014;15:20585–606.
Article
PubMed
PubMed Central
Google Scholar
Yesil-Celiktas O, Sevimli C, Bedir E, Vardar-Sukan F. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum Nutr. 2010;65:158–63.
Article
CAS
PubMed
Google Scholar
Tai J, Cheung S, Wu M, Hasman D. Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine. 2012;19:436–43.
Article
CAS
PubMed
Google Scholar
Ngo SN, Williams DB, Head RJ. Rosemary and cancer prevention preclinical perspectives. Crit Rev Food Sci Nutr. 2011;51:946–54.
Article
CAS
PubMed
Google Scholar
Ðilas S, Knez Ž, Četojević-Simin D, Tumbas V, Škerget M, Čanadanović-Brunet J, Ćetković G. In vitro antioxidant and antiproliferative activity of three rosemary (Rosmarinus officinalis L.) extract formulations. Int J Food Sci Tehnol. 2012;47:2052–62.
Article
Google Scholar
Plouzek CA, Ciolino HP, Clarke R, Yeh GF. Inhibition of P-glycoprotein activity and reversal of multidrug resistance in vitro by rosemary extract. Eur J Cancer. 1999;35:1541–5.
Article
CAS
PubMed
Google Scholar
Kar S, Palit S, Ball WB, Das PK. Carnosic acid modulates Akt/IKK/NF-kB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis. 2012;17:735–47.
Article
CAS
PubMed
Google Scholar
Visanji JM, Thompson DG, Padfield PJ. Induction of G2/M phase cell cycle arrest by carnosol and carnosic acid is associated with alteration of cyclin A and cyclin B1 levels. Cancer Lett. 2006;237:130–6.
Article
CAS
PubMed
Google Scholar
Dorrie J, Sapala K, Zunino SJ. Carnosol-induced apoptosis and downregulation of Bcl-2 in B-lineage leukemia cells. Cancer Lett. 2001;170:33–9.
Article
CAS
PubMed
Google Scholar
Tsai CW, Lin CY, Lin HH, Chen JH. Carnosic acid, a rosemary phenolic compound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells. Neurochem Res. 2011;36:2442–51.
Article
CAS
PubMed
Google Scholar
Huang MT, Ho CT, Wang ZY, Ferraro T, Lou YR, Stauber K, Ma W, et al. Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer Res. 1994;54:701–8.
CAS
PubMed
Google Scholar
Manoharan S, Vasanthaselvan M, Silvan S, Baskaran N, Kumar Singh A, Vinoth KV. Carnosic acid: a potent chemopreventive agent against oral carcinogenesis. Chem Biol Interact. 2010;188:616–22.
Article
CAS
PubMed
Google Scholar
Aquilina G, Bories G, Chesson A, Cocconcelli PS, de Knecht J, Dierick NA, et al. Statement on the safety and efficacy of the product ‘Rosemary extract liquid of natural origin’ as a technological feed additive for dogs and cats. European Food Safety Authority J. 2012;10:2526.
Google Scholar
Aguilar F, Autrup H, Barlow S, Castle L, Crebelli R, Dekant W, et al. Use of rosemary extracts as a food additive, scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food. The European Food Safety Authority Journal. 2008;721:1–29.
Google Scholar
Romo Vaguero M, García Villalba R, Larrosa M, Yáñez-Gascón MJ, Fromentin E, Flanagan J, et al. Bioavailability of the major bioactive diterpenoids in a rosemary extract: metabolic profile in the intestine, liver, plasma, and brain of Zucker rats. Mol Nutr Food Res. 2013;57:1834–46.
Google Scholar
Pesakhov S, Khanin M, Studzinski GP, Danilenko M. Distinct combinatorial effects of the plant polyphenols curcumin, carnosic acid, and silibinin on proliferation and apoptosis in acute myeloid leukemia cells. Nutr Cancer. 2010;62:811–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Einbond LS, Wu HA, Kashiwazaki R, He K, Roller M, Su T, et al. Carnosic acid inhibits the growth of ER-negative human breast cancer cells and synergizes with curcumin. Fitoterapia. 2012;83:1160–8.
Article
CAS
PubMed
Google Scholar