Chon T, Park Y, Park KY, Choi S, Kim KT, Cho EC. Implementation of computational methods to pattern recognition of movement behavior of Blattella germanica (Blattaria: Blattellidae) treated with Ca2 signal inducing chemicals. Appl Entomol Zool. 2004;39(1):79–96.
Article
Google Scholar
Liu Y, Lee S, Chon T. Analysis of behavioral changes of zebrafish (Danio rerio) in response to formaldehyde using Self-organizing map and a hidden Markov model. Ecol Model. 2011;222(14):2191–201.
Article
CAS
Google Scholar
Clarke RL, Smith RF, Justesen DR. An infrared device for detecting locomotor activity. Behav Res Methods Instrum Comput. 1985;17(5):519–25.
Article
Google Scholar
Robles E. A method to analyze the spatial distribution of behavior. Behav Res Methods Instrum Comput. 1990;22(6):540–9.
Article
Google Scholar
Kirkpatrick T, Schneider CW, Pavloski R. A computerized infrared monitor for following movement in aquatic animals. Behav Res Methods Instrum Comput. 1991;23(1):16–22.
Article
Google Scholar
Steinberg CE, Lorenz R, Spieser OH. Effects of atrazine on swimming behavior of zebrafish, Brachydanio rerio. Water Res. 1995;29(3):981–5.
Article
CAS
Google Scholar
Kato S, Tamada K, Shimada Y, Chujo T. A quantification of goldfish behavior by an image processing system. Behav Brain Res. 1996;80(1):51–5.
Article
CAS
PubMed
Google Scholar
Baganz D, Staaks G, Steinberg C. Impact of the cyanobacteria toxin, microcystin-lr on behaviour of zebrafish, danio rerio. Water Res. 1998;32(3):948–52.
Article
CAS
Google Scholar
Kane AS, Salierno JD, Gipson GT, Molteno TC, Hunter C. A video-based movement analysis system to quantify behavioral stress responses of fish. Water Res. 2004;38(18):3993–4001.
Article
CAS
PubMed
Google Scholar
Noldus LP, Spink AJ, Tegelenbosch RA. EthoVision: a versatile video tracking system for automation of behavioral experiments. Behav Res Methods Instrum Comput. 2001;33(3):398–414.
Article
CAS
PubMed
Google Scholar
Kwak I, Chon T, Kang H, Chung N, Kim J, Koh SC, et al. Pattern recognition of the movement tracks of medaka (Oryzias latipes) in response to sub-lethal treatments of an insecticide by using artificial neural networks. Environ Pollut. 2002;120(3):671–81.
Article
CAS
PubMed
Google Scholar
Park YS, Chung NI, Choi KH, Cha EY, Lee SK, Chon TS. Computational characterization of behavioral response of medaka (Oryzias latipes) treated with diazinon. Aquat Toxicol. 2005;71(3):215–28.
Article
CAS
PubMed
Google Scholar
Murray AG. Epidemiology of the spread of viral diseases under aquaculture. Curr Opin Virol. 2013;3(1):74–8.
Article
PubMed
Google Scholar
Peeler EJ, Taylor NG. The application of epidemiology in aquatic animal health -opportunities and challenges. Vet Res. 2011;42:94-9716-42-94.
Article
Google Scholar
Castro V, Grisdale-Helland B, Jorgensen SM, Helgerud J, Claireaux G, Farrell AP, et al. Disease resistance is related to inherent swimming performance in Atlantic salmon. BMC Physiol. 2013;13:1-6793-13-1.
Article
Google Scholar
Hill AJ, Teraoka H, Heideman W, Peterson RE. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci. 2005;86(1):6–19.
Article
CAS
PubMed
Google Scholar
Soto E, Hawke J, Fernandez D, Morales JA. Francisella sp., an emerging pathogen of tilapia, Oreochromis niloticus (L.), in Costa Rica. J Fish Dis. 2009;32(8):713–22.
Article
CAS
PubMed
Google Scholar
Meyer FP, Warren JW, Carey TG. A guide to integrated fish health management in the Great Lakes basin. Ann Arbor, Michigan: Great Lakes Fishery Commission; Spec. Pub. 1983;175.
Ou T, Zhu R, Chen Z, Zhang Q. Isolation and identification of a lethal rhabdovirus from farmed rice field eels Monopterus albus. Dis Aquat Organ. 2013;106(3):197–206.
Article
CAS
PubMed
Google Scholar
Ellis A. Eosinophilic granular cells (EGC) and histamine responses to Aeromonas salmonicida toxins in rainbow trout. Dev Comp Immunol. 1985;9(2):251–60.
Article
CAS
PubMed
Google Scholar
Wang C, Shih H, Ku C, Chen S. Studies on epizootic iridovirus infection among red sea bream, Pagrus major (Temminck & Schlegel), cultured in Taiwan. J Fish Dis. 2003;26(3):127–33.
Article
CAS
PubMed
Google Scholar
Cheng L, Chen C, Tsai M, Wang P, Hsu J, Chern R, et al. Koi herpesvirus epizootic in cultured carp and koi, Cyprinus carpio L., in Taiwan. J Fish Dis. 2011;34(7):547–54.
Article
CAS
PubMed
Google Scholar
Fryer J, Hedrick R. Piscirickettsia salmonis: a Gram‐negative intracellular bacterial pathogen of fish. J Fish Dis. 2003;26(5):251–62.
Article
CAS
PubMed
Google Scholar
Mohanty B, Sahoo P. Edwardsiellosis in fish: a brief review. J Biosci. 2007;32(3):1331–44.
Article
CAS
PubMed
Google Scholar
Plumb JA, Hanson LA. Health maintenance and principal microbial diseases of cultured fishes. Hoboken: Wiley; 2011.
Google Scholar
Kodama H, Murai T, Nakanishi Y, Yamamoto F, Mikami T, Izawa H. Bacterial infection which produces high mortality in cultured Japanese flounder (Paralichthys olivaceus) in Hokkaido. Jpn J Vet Res. 1987;35(4):227–34.
CAS
PubMed
Google Scholar
Park S, Wakabayashi H, Watanabe Y. Serotypes and virulence of Edwardsiella tarda isolated from eels and their environment. Fish Pathol. 1983;18(2):85–9.
Article
Google Scholar
Amandi A, Hiu SF, Rohovec JS, Fryer JL. Isolation and characterization of Edwardsiella tarda from fall chinook salmon (Oncorhynchus tshawytscha). Appl Environ Microbiol. 1982;43(6):1380–4.
PubMed Central
CAS
PubMed
Google Scholar
Meyer FP, Bullock GL. Edwardsiella tarda, a new pathogen of channel catfish (Ictalurus punctatus). Appl Microbiol. 1973;25(1):155–6.
PubMed Central
CAS
PubMed
Google Scholar
Ling SH, Wang XH, Lim TM, Leung KY. Green fluorescent protein‐tagged Edwardsiella tarda reveals portal of entry in fish. FEMS Microbiol Lett. 2001;194(2):239–43.
Article
CAS
PubMed
Google Scholar
Ling SH, Wang XH, Xie L, Lim TM, Leung KY. Use of green fluorescent protein (GFP) to study the invasion pathways of Edwardsiella tarda in in vivo and in vitro fish models. Microbiology. 2000;146(Pt 1):7–19.
Article
CAS
PubMed
Google Scholar
Rashid MM, Nakai T, Muroga K, Miyazaki T. Pathogenesis of experimental edwardsiellosis in Japanese flounder Paralichthys olivaceus. Fisheries Sci. 1997;63(3):384–7.
CAS
Google Scholar
Pressley ME, Phelan III PE, Eckhard Witten P, Mellon MT, Kim CH. Pathogenesis and inflammatory response to Edwardsiella tarda infection in the zebrafish. Dev Comp Immunol. 2005;29(6):501–13.
Article
CAS
PubMed
Google Scholar
Janda JM, Abbott SL, Kroske-Bystrom S, Cheung WK, Powers C, Kokka RP, et al. Pathogenic properties of Edwardsiella species. J Clin Microbiol. 1991;29(9):1997–2001.
PubMed Central
CAS
PubMed
Google Scholar
Wang X, Wang Q, Yang M, Xiao J, Liu Q, Wu H, et al. QseBC controls flagellar motility, fimbrial hemagglutination and intracellular virulence in fish pathogen Edwardsiella tarda. Fish Shellfish Immunol. 2011;30(3):944–53.
Article
PubMed
Google Scholar
Phillips AD, Trabulsi LR, Dougan G, Frankel G. Edwardsiella tarda induces plasma membrane ruffles on infection of HEp‐2 cells. FEMS Microbiol Lett. 1998;161(2):317–23.
Article
CAS
PubMed
Google Scholar
Srinivasa Rao PS, Yamada Y, Leung KY. A major catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda. Microbiology. 2003;149(Pt 9):2635–44.
Article
CAS
PubMed
Google Scholar
Sullivan C, Kim CH. Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol. 2008;25(4):341–50.
Article
CAS
PubMed
Google Scholar
Prajsnar TK, Cunliffe VT, Foster SJ, Renshaw SA. A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte‐dependent resistance of zebrafish to non‐host specialized pathogens. Cell Microbiol. 2008;10(11):2312–25.
Article
CAS
PubMed
Google Scholar
Clatworthy AE, Lee JS, Leibman M, Kostun Z, Davidson AJ, Hung DT. Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. Infect Immun. 2009;77(4):1293–303.
Article
PubMed Central
CAS
PubMed
Google Scholar
Davis J, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. 2002;17(6):693–702.
Article
CAS
PubMed
Google Scholar
Neely MN, Pfeifer JD, Caparon M. Streptococcus-zebrafish model of bacterial pathogenesis. Infect Immun. 2002;70(7):3904–14.
Article
PubMed Central
CAS
PubMed
Google Scholar
Runft DL, Mitchell KC, Abuaita BH, Allen JP, Bajer S, Ginsburg K, et al. Zebrafish as a natural host model for Vibrio cholerae colonization and transmission. Appl Environ Microbiol. 2014;80(5):1710–7.
Article
PubMed Central
PubMed
Google Scholar
Rowe HM, Withey JH, Neely MN. Zebrafish as a model for zoonotic aquatic pathogens. Dev Comp Immunol. 2014;46(1):96–107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harriff M, Bermudez L, Kent M. Experimental exposure of zebrafish, Danio rerio (Hamilton), to Mycobacterium marinum and Mycobacterium peregrinum reveals the gastrointestinal tract as the primary route of infection: a potential model for environmental mycobacterial infection. J Fish Dis. 2007;30(10):587–600.
Article
CAS
PubMed
Google Scholar
Van Soest JJ, Stockhammer OW, Ordas A, Bloemberg GV, Spaink HP, Meijer AH. Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda. BMC Immunol. 2011;12:58-2172-12-58.
Google Scholar
Petrie-Hanson L, Romano C, Mackey R, Khosravi P, Hohn C, Boyle C. Evaluation of zebrafish Danio rerio as a model for enteric septicemia of catfish (ESC). J Aquat Anim Health. 2007;19(3):151–8.
Article
CAS
PubMed
Google Scholar
Konstantinova P, Udvarev A, Semerdjiev T: A study of a target tracking algorithm using global nearest neighbor approach. In Proceedings of the International Conference on Computer Systems and Technologies (CompSysTech’03) 2003.
Xia C, Li Y, Chon T, Lee J. A stereo vision based method for autonomous spray of pesticides to plant leaves. IEEE International Symposium On: IEEE. 2009;909–914.
Kohonen T. Self-organization and associative memory. Springer Series in Information Science. 1988;8.
Lippmann RP. An introduction to computing with neural nets. ASSP Magazine, IEEE. 1987;4(2):4–22.
Article
Google Scholar
Zurada JM. Introduction to artificial neural systems. Eagan: West publishing company; 1992. p. 683.
Google Scholar
Kohonen T. Self-Organizing Maps. Berlin: Springer; 2001. p. 1–502.
Google Scholar
Legendre P, Legendre LF. Numerical ecology. Amsterdam: Elsevier; 2012.
Google Scholar
Céréghino R, Park YS. Review of the Self-Organizing Map (SOM) approach in water resources: commentary. Environ Model Software. 2009;24(8):945–7.
Article
Google Scholar
Vesanto J, Himberg J, Alhoniemi E, Parhankangas J. Self-organizing map in Matlab: the SOM Toolbox Anonymous. Proceedings of the Proceedings of the Matlab DSP Conference. 1999;99:16–7.
Google Scholar
Magnadóttir B. Innate immunity of fish (overview). Fish Shellfish Immunol. 2006;20(2):137–51.
Article
PubMed
Google Scholar
Birkbeck T, Feist S, Verner–Jeffreys D. Francisella infections in fish and shellfish. J Fish Dis. 2011;34(3):173–87.
Article
CAS
PubMed
Google Scholar
Tobback E, Decostere A, Hermans K, Haesebrouck F, Chiers K. Yersinia ruckeri infections in salmonid fish. J Fish Dis. 2007;30(5):257–68.
Article
CAS
PubMed
Google Scholar
Miyazaki T, Kaige N. Comparative histopathology of edwardsiellosis in fishes. Fish Pathol. 1985;20.
Yu JE, Cho MY, Kim J, Kang HY. Large antibiotic-resistance plasmid of Edwardsiella tarda contributes to virulence in fish. Microb Pathog. 2012;52(5):259–66.
Article
CAS
PubMed
Google Scholar
Yu JE, Yoo AY, Choi K, Cha J, Kwak I, Kang HY. Identification of antigenic Edwardsiella tarda surface proteins and their role in pathogenesis. Fish Shellfish Immunol. 2013;34(2):673–82.
Article
CAS
PubMed
Google Scholar
Pressley ME, Phelan III PE, Eckhard Witten P, Mellon MT, Kim CH. Pathogenesis and inflammatory response to Edwardsiella tarda infection in the zebrafish. Dev Comp Immunol. 2005;29(6):501–13.
Article
CAS
PubMed
Google Scholar
Chen J, Lai S, Huang S. Molecular cloning, characterization, and sequencing of the hemolysin gene from Edwardsiella tarda. Arch Microbiol. 1996;165(1):9–17.
Article
CAS
PubMed
Google Scholar
Pirarat N, Maita M, Endo M, Katagiri T. Lymphoid apoptosis in Edwardsiella tarda septicemia in tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2007;22(6):608–16.
Article
CAS
PubMed
Google Scholar
Bullock G, Herman RL. Edwardsiella Infections of Fishes. US Fish Wildlife. 1985;71.
Xiao J, Chen T, Liu B, Yang W, Wang Q, Qu J, et al. Edwardsiella tarda mutant disrupted in type III secretion system and chorismic acid synthesis and cured of a plasmid as a live attenuated vaccine in turbot. Fish Shellfish Immunol. 2013;35(3):632–41.
Article
CAS
PubMed
Google Scholar
Liu X, Chang X, Wu H, Xiao J, Gao Y, Zhang Y. Role of intestinal inflammation in predisposition of Edwardsiella tarda infection in zebrafish (Danio rerio). Fish Shellfish Immunol. 2014;41(2):271–8.
Article
PubMed
Google Scholar
Hagiwara H, Takano R, Noguchi N, Narita M. Lesions Induced in Seriola dumerili Following Exposure to Streptococcus dysgalactiae by Oral Treatment or Immersion. J Comp Pathol. 2010;143(4):262–7.
Article
CAS
PubMed
Google Scholar
Mata AI, Gibello A, Casamayor A, Blanco MM, Dominguez L, Fernandez-Garayzabal JF. Multiplex PCR assay for detection of bacterial pathogens associated with warm-water Streptococcosis in fish. Appl Environ Microbiol. 2004;70(5):3183–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tsai M, Ho P, Wang P, Liaw L, Chen S. Development of a multiplex polymerase chain reaction to detect five common Gram‐negative bacteria of aquatic animals. J Fish Dis. 2012;35(7):489–95.
Article
CAS
PubMed
Google Scholar