Pestka JJ. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol. 2010;84(9):663–79.
Article
CAS
PubMed
Google Scholar
Pestka JJ. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2008;25(9):1128–40.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rotter BA, Prelusky DB, Pestka JJ. Toxicology of deoxynivalenol (vomitoxin). J Toxicol Environ Health. 1996;48(1):1–34.
Article
CAS
PubMed
Google Scholar
Maresca M. From the gut to the brain: journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins (Basel). 2013;5(4):784–820.
Article
CAS
Google Scholar
Ferrari L, Cantoni AM, Borghetti P, De Angelis E, Corradi A. Cellular immune response and immunotoxicity induced by DON (deoxynivalenol) in piglets. Vet Res Commun. 2009;33 Suppl 1:133–5.
Article
PubMed
Google Scholar
Kinser S, Jia Q, Li M, Laughter A, Cornwell P, Corton JC, et al. Gene expression profiling in spleens of deoxynivalenol-exposed mice: immediate early genes as primary targets. J Toxicol Environ Health A. 2004;67(18):1423–41.
Article
CAS
PubMed
Google Scholar
Chaytor AC, See MT, Hansen JA, de Souza AL, Middleton TF, Kim SW. Effects of chronic exposure of diets with reduced concentrations of aflatoxin and deoxynivalenol on growth and immune status of pigs. J Anim Sci. 2011;89(1):124–35.
Article
CAS
PubMed
Google Scholar
Pestka JJ, Lin WS, Miller ER. Emetic activity of the trichothecene 15-acetyldeoxynivalenol in swine. Food Chem Toxicol. 1987;25(11):855–8.
Article
CAS
PubMed
Google Scholar
Hunder G, Schumann K, Strugala G, Gropp J, Fichtl B, Forth W. Influence of subchronic exposure to low dietary deoxynivalenol, a trichothecene mycotoxin, on intestinal absorption of nutrients in mice. Food Chem Toxicol. 1991;29(12):809–14.
Article
CAS
PubMed
Google Scholar
Awad WA, Razzazi-Fazeli E, Bohm J, Zentek J. Effects of B-trichothecenes on luminal glucose transport across the isolated jejunal epithelium of broiler chickens. J Anim Physiol Anim Nutr (Berl). 2008;92(3):225–30.
Article
CAS
Google Scholar
Maresca M, Mahfoud R, Garmy N, Fantini J. The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells. J Nutr. 2002;132(9):2723–31.
CAS
PubMed
Google Scholar
Sergent T, Parys M, Garsou S, Pussemier L, Schneider YJ, Larondelle Y. Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations. Toxicol Lett. 2006;164(2):167–76.
Article
CAS
PubMed
Google Scholar
Pinton P, Accensi F, Beauchamp E, Cossalter AM, Callu P, Grosjean F, et al. Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses. Toxicol Lett. 2008;177(3):215–22.
Article
CAS
PubMed
Google Scholar
Kasuga F, Hara-Kudo Y, Saito N, Kumagai S, Sugita-Konishi Y. In vitro effect of deoxynivalenol on the differentiation of human colonic cell lines Caco-2 and T84. Mycopathologia. 1998;142(3):161–7.
Article
CAS
PubMed
Google Scholar
Awad WA, Ghareeb K, Zentek J. Mechanisms underlying the inhibitory effect of the feed contaminant deoxynivalenol on glucose absorption in broiler chickens. Vet J. 2014;1:198–0.
Google Scholar
Awad WA, Aschenbach JR, Setyabudi FM, Razzazi-Fazeli E, Bohm J, Zentek J. In vitro effects of deoxynivalenol on small intestinal D-glucose uptake and absorption of deoxynivalenol across the isolated jejunal epithelium of laying hens. Poult Sci. 2007;86(1):15–20.
Article
CAS
PubMed
Google Scholar
Yin J, Ren W, Duan J, Wu L, Chen S, Li T, et al. Dietary arginine supplementation enhances intestinal expression of SLC7A7 and SLC7A1 and ameliorates growth depression in mycotoxin-challenged pigs. Amino Acids. 2014;46(4):883–92.
Article
CAS
PubMed
Google Scholar
Wu L, Wang W, Yao K, Zhou T, Yin J, Li T, et al. Effects of dietary arginine and glutamine on alleviating the impairment induced by deoxynivalenol stress and immune relevant cytokines in growing pigs. PLoS One. 2013;8(7), e69502.
Article
CAS
PubMed Central
PubMed
Google Scholar
Xiao H, Tan BE, Wu MM, Yin YL, Li TJ, Yuan DX, et al. Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: II. Intestinal morphology and function. J Anim Sci 2013;91(10):4750–56.
Article
CAS
PubMed
Google Scholar
Weaver AC, See MT, Hansen JA, Kim YB, De Souza AL, Middleton TF, et al. The use of feed additives to reduce the effects of aflatoxin and deoxynivalenol on pig growth, organ health and immune status during chronic exposure. Toxins (Basel). 2013;5(7):1261–81.
Article
CAS
Google Scholar
Shi Y, Pestka JJ. Attenuation of mycotoxin-induced IgA nephropathy by eicosapentaenoic acid in the mouse: dose response and relation to IL-6 expression. J Nutr Biochem. 2006;17(10):697–706.
Article
CAS
PubMed
Google Scholar
Awad WA, Razzazi-Fazeli E, Bohm J, Zentek J. Influence of deoxynivalenol on the D-glucose transport across the isolated epithelium of different intestinal segments of laying hens. J Anim Physiol Anim Nutr (Berl). 2007;91(5–6):175–80.
Article
CAS
Google Scholar
Danicke S, Valenta H, Klobasa F, Doll S, Ganter M, Flachowsky G. Effects of graded levels of Fusarium toxin contaminated wheat in diets for fattening pigs on growth performance, nutrient digestibility, deoxynivalenol balance and clinical serum characteristics. Arch Anim Nutr. 2004;58(1):1–17.
Article
CAS
PubMed
Google Scholar
Diesing AK, Nossol C, Danicke S, Walk N, Post A, Kahlert S, et al. Vulnerability of polarised intestinal porcine epithelial cells to mycotoxin deoxynivalenol depends on the route of application. PLoS One. 2011;6(2), e17472.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nejdfors P, Ekelund M, Jeppsson B, Westrom BR. Mucosal in vitro permeability in the intestinal tract of the pig, the rat, and man: species- and region-related differences. Scand J Gastroenterol. 2000;35(5):501–7.
Article
CAS
PubMed
Google Scholar
Xiao H, Wu MM, Tan BE, Yin YL, Li TJ, Xiao DF, et al. Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: I. Growth performance, immune function and antioxidation capacity. J Anim Sci. 2013;91(10):4772–80
Article
CAS
PubMed
Google Scholar
Danicke S, Brosig B, Kersten S, Kluess J, Kahlert S, Panther P, et al. The Fusarium toxin deoxynivalenol (DON) modulates the LPS induced acute phase reaction in pigs. Toxicol Lett. 2013;220(2):172–80.
Article
CAS
PubMed
Google Scholar
Rohweder D, Kersten S, Valenta H, Sondermann S, Schollenberger M, Drochner W, et al. Bioavailability of the Fusarium toxin deoxynivalenol (DON) from wheat straw and chaff in pigs. Arch Anim Nutr. 2013;67(1):37–47.
Article
CAS
PubMed
Google Scholar
Moore CJ, Blaney BJ, Spencer RA, Dodman RL. Rejection by pigs of mouldy grain containing deoxynivalenol. Aust Vet J. 1985;62(2):60–2.
Article
CAS
PubMed
Google Scholar
Gutzwiller A. Effects of deoxynivalenol (DON) in the lactation diet on the feed intake and fertility of sows. Mycotoxin Res. 2010;26(3):211–5.
Article
CAS
PubMed
Google Scholar
Tiemann U, Danicke S. In vivo and in vitro effects of the mycotoxins zearalenone and deoxynivalenol on different non-reproductive and reproductive organs in female pigs: a review. Food Addit Contam. 2007;24(3):306–14.
Article
CAS
PubMed
Google Scholar
Muller G, Kielstein P, Rosner H, Berndt A, Heller M, Kohler H. Studies on the influence of combined administration of ochratoxin A, fumonisin B1, deoxynivalenol and T2 toxin on immune and defence reactions in weaner pigs. Mycoses. 1999;42(7–8):485–93.
Article
CAS
PubMed
Google Scholar
Prelusky DB, Gerdes RG, Underhill KL, Rotter BA, Jui PY, Trenholm HL. Effects of low-level dietary deoxynivalenol on haematological and clinical parameters of the pig. Nat Toxins. 1994;2(3):97–104.
Article
CAS
PubMed
Google Scholar
Overnes G, Matre T, Sivertsen T, Larsen HJ, Langseth W, Reitan LJ, et al. Effects of diets with graded levels of naturally deoxynivalenol-contaminated oats on immune response in growing pigs. Zentralbl Veterinarmed A. 1997;44(9–10):539–50.
Article
CAS
PubMed
Google Scholar
Swamy HV, Smith TK, MacDonald EJ, Boermans HJ, Squires EJ. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on swine performance, brain regional neurochemistry, and serum chemistry and the efficacy of a polymeric glucomannan mycotoxin adsorbent. J Anim Sci. 2002;80(12):3257–67.
CAS
PubMed
Google Scholar
Bergsjo B, Langseth W, Nafstad I, Jansen JH, Larsen HJ. The effects of naturally deoxynivalenol-contaminated oats on the clinical condition, blood parameters, performance and carcass composition of growing pigs. Vet Res Commun. 1993;17(4):283–94.
Article
CAS
PubMed
Google Scholar
Smith TK, McMillan EG, Castillo JB. Effect of feeding blends of Fusarium mycotoxin-contaminated grains containing deoxynivalenol and fusaric acid on growth and feed consumption of immature swine. J Anim Sci. 1997;75(8):2184–91.
CAS
PubMed
Google Scholar
Young LG, McGirr L, Valli VE, Lumsden JH, Lun A. Vomitoxin in corn fed to young pigs. J Anim Sci. 1983;57(3):655–64.
CAS
PubMed
Google Scholar
Rotter BA, Thompson BK, Lessard M, Trenholm HL, Tryphonas H. Influence of low-level exposure to Fusarium mycotoxins on selected immunological and hematological parameters in young swine. Fundam Appl Toxicol. 1994;23(1):117–24.
Article
CAS
PubMed
Google Scholar
Swamy HV, Smith TK, MacDonald EJ, Karrow NA, Woodward B, Boermans HJ. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on growth and immunological measurements of starter pigs, and the efficacy of a polymeric glucomannan mycotoxin adsorbent. J Anim Sci. 2003;81(11):2792–803.
CAS
PubMed
Google Scholar
Goyarts T, Grove N, Danicke S. Effects of the Fusarium toxin deoxynivalenol from naturally contaminated wheat given subchronically or as one single dose on the in vivo protein synthesis of peripheral blood lymphocytes and plasma proteins in the pig. Food Chem Toxicol. 2006;44(12):1953–65.
Article
CAS
PubMed
Google Scholar
Nyblom H, Berggren U, Balldin J, Olsson R. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol Alcohol. 2004;39(4):336–9.
Article
CAS
PubMed
Google Scholar
Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37(1):1–17.
Article
PubMed
Google Scholar
Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids. 2013;45(3):463–77.
Article
PubMed
Google Scholar
Wu G. Functional amino acids in growth, reproduction, and health. Adv Nutr. 2010;1(1):31–7.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yin J, Ren W, Liu G, Duan J, Yang G, Wu L, et al. Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radic Res. 2013;47(12):1027–35.
Article
CAS
PubMed
Google Scholar
Robert L. Serum haptoglobin in clinical biochemistry: change of a paradigm. Pathol Biol (Paris). 2013;61(6):277–9.
Article
CAS
Google Scholar
Jiang SZ, Yang ZB, Yang WR, Gao J, Liu FX, Broomhead J, et al. Effects of purified zearalenone on growth performance, organ size, serum metabolites, and oxidative stress in postweaning gilts. J Anim Sci. 2011;89(10):3008–15.
Article
CAS
PubMed
Google Scholar
Dinu D, Bodea GO, Ceapa CD, Munteanu MC, Roming FI, Serban AI, et al. Adapted response of the antioxidant defense system to oxidative stress induced by deoxynivalenol in Hek-293 cells. Toxicon. 2011;57(7–8):1023–32.
Article
CAS
PubMed
Google Scholar
Mary VS, Theumer MG, Arias SL, Rubinstein HR. Reactive oxygen species sources and biomolecular oxidative damage induced by aflatoxin B1 and fumonisin B1 in rat spleen mononuclear cells. Toxicology. 2012;302(2–3):299–307.
Article
CAS
PubMed
Google Scholar
Boisclair YR, Rhoads RP, Ueki I, Wang J, Ooi GT. The acid-labile subunit (ALS) of the 150 kDa IGF-binding protein complex: an important but forgotten component of the circulating IGF system. J Endocrinol. 2001;170(1):63–70.
Article
CAS
PubMed
Google Scholar
Kobayashi-Hattori K, Amuzie CJ, Flannery BM, Pestka JJ. Body composition and hormonal effects following exposure to mycotoxin deoxynivalenol in the high-fat diet-induced obese mouse. Mol Nutr Food Res. 2011;55(7):1070–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Amuzie CJ, Pestka JJ. Suppression of insulin-like growth factor acid-labile subunit expression–a novel mechanism for deoxynivalenol-induced growth retardation. Toxicol Sci. 2010;113(2):412–21.
Article
CAS
PubMed Central
PubMed
Google Scholar
Amuzie CJ, Shinozuka J, Pestka JJ. Induction of suppressors of cytokine signaling by the trichothecene deoxynivalenol in the mouse. Toxicol Sci. 2009;111(2):277–87.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kolf-Clauw M, Castellote J, Joly B, Bourges-Abella N, Raymond-Letron I, Pinton P, et al. Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: histopathological analysis. Toxicol In Vitro. 2009;23(8):1580–4.
Article
CAS
PubMed
Google Scholar
Awad WA, Bohm J, Razzazi-Fazeli E, Zentek J. Effects of feeding deoxynivalenol contaminated wheat on growth performance, organ weights and histological parameters of the intestine of broiler chickens. J Anim Physiol Anim Nutr (Berl). 2006;90(1–2):32–7.
Article
CAS
Google Scholar
Piva A, Casadei G, Pagliuca G, Cabassi E, Galvano F, Solfrizzo M, et al. Activated carbon does not prevent the toxicity of culture material containing fumonisin B1 when fed to weanling piglets. J Anim Sci. 2005;83(8):1939–47.
CAS
PubMed
Google Scholar
Brown TP, Rottinghaus GE, Williams ME. Fumonisin mycotoxicosis in broilers: performance and pathology. Avian Dis. 1992;36(2):450–4.
Article
CAS
PubMed
Google Scholar
Bouhet S, Oswald IP. The intestine as a possible target for fumonisin toxicity. Mol Nutr Food Res. 2007;51(8):925–31.
Article
CAS
PubMed
Google Scholar
Bracarense AP, Lucioli J, Grenier B, Drociunas Pacheco G, Moll WD, Schatzmayr G, et al. Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. Br J Nutr. 2012;107(12):1776–86.
Article
CAS
PubMed
Google Scholar
Wu G. Functional amino acids in nutrition and health. Amino Acids. 2013;45(3):407–11.
Article
CAS
PubMed
Google Scholar
Zhang J, Yin Y, Shu XG, Li T, Li F, Tan B, et al. Oral administration of MSG increases expression of glutamate receptors and transporters in the gastrointestinal tract of young piglets. Amino Acids. 2013;45(5):1169–77.
Article
CAS
PubMed
Google Scholar
Robinson MB. The family of sodium-dependent glutamate transporters: a focus on the GLT-1/EAAT2 subtype. Neurochem Int. 1998;33(6):479–91.
Article
CAS
PubMed
Google Scholar
Hwang ES, Hirayama BA, Wright EM. Distribution of the SGLT1 Na+/glucose cotransporter and mRNA along the crypt-villus axis of rabbit small intestine. Biochem Biophys Res Commun. 1991;181(3):1208–17.
Article
CAS
PubMed
Google Scholar
Wright EM, Loo DD, Turk E, Hirayama BA. Sodium cotransporters. Curr Opin Cell Biol. 1996;8(4):468–73.
Article
CAS
PubMed
Google Scholar
Daniel H. Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol. 2004;66:361–84.
Article
CAS
PubMed
Google Scholar
Broer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev. 2008;88(1):249–86.
Article
CAS
PubMed
Google Scholar
Ruan Z, Lv Y, Fu X, He Q, Deng Z, Liu W, et al. Metabolomic analysis of amino acid metabolism in colitic rats supplemented with lactosucrose. Amino Acids. 2013;45(4):877–87.
Article
CAS
PubMed
Google Scholar
Wang J, Chen L, Li P, Li X, Zhou H, Wang F, et al. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr. 2008;138(6):1025–32.
CAS
PubMed
Google Scholar