Nolan MW, Kogan L, Griffin LR, et al. Intensity-modulated and image-guided radiation therapy for treatment of genitourinary carcinomas in dogs. J Vet Intern Med. 2012;26(4):987–95. https://doi.org/10.1111/j.1939-1676.2012.00946.x.
Article
CAS
Google Scholar
Walz JZ, Desai N, Van Asselt N, Poirier VJ, Hansen K, Selmic L. Definitive-intent intensity-modulated radiation therapy for treatment of canine prostatic carcinoma: a multi-institutional retrospective study. Vet Comp Oncol. 2020;18(3):381–8. https://doi.org/10.1111/vco.12561.
Article
CAS
Google Scholar
Marvel SJ, Séguin B, Dailey DD, Thamm DH. Clinical outcome of partial cystectomy for transitional cell carcinoma of the canine bladder. Vet Comp Oncol. 2017;15(4):1417–27. https://doi.org/10.1111/vco.12286.
Article
CAS
Google Scholar
Saeki K, Fujita A, Fujita N, Nakagawa T, Nishimura R. Total cystectomy and subsequent urinary diversion to the prepuce or vagina in dogs with transitional cell carcinoma of the trigone area: a report of 10 cases (2005-2011). Can Vet J. 2015;56(1):73–80.
Google Scholar
Bennett TC, Matz BM, Henderson RA, et al. Total prostatectomy as a treatment for prostatic carcinoma in 25 dogs. Vet Surg. 2018;47(3):367–77. https://doi.org/10.1111/vsu.12768.
Article
Google Scholar
Allstadt SD, Rodriguez CO, Boostrom B, Rebhun RB, Skorupski KA. Randomized phase III trial of Piroxicam in combination with Mitoxantrone or carboplatin for first-line treatment of urogenital tract transitional cell carcinoma in dogs. J Vet Intern Med. 2015;29(1):261–7. https://doi.org/10.1111/jvim.12533.
Article
CAS
Google Scholar
Arnold EJ, Childress MO, Fourez LM, et al. Clinical trial of vinblastine in dogs with transitional cell carcinoma of the urinary bladder. J Vet Intern Med. 2011;25(6):1385–90. https://doi.org/10.1111/j.1939-1676.2011.00796.x.
Article
CAS
Google Scholar
Fulkerson CM, Knapp DW. Management of transitional cell carcinoma of the urinary bladder in dogs: a review. Vet J. 2015;205(2):217–25. https://doi.org/10.1016/j.tvjl.2015.01.017.
Article
Google Scholar
Berthold DR, Pond GR, Soban F, De Wit R, Eisenberger M, Tannock IF. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol. 2008;26(2):242–5. https://doi.org/10.1200/JCO.2007.12.4008.
Article
CAS
Google Scholar
Sweeney CJ, Chen YH, Carducci M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate Cancer. N Engl J Med. 2015;373(8):737–46. https://doi.org/10.1056/nejmoa1503747.
Article
CAS
Google Scholar
James ND, Sydes MR, Clarke NW, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016;387(10024):1163–77. https://doi.org/10.1016/S0140-6736(15)01037-5.
Article
CAS
Google Scholar
Puente J, Grande E, Medina A, Maroto P, Lainez N, Arranz JA. Docetaxel in prostate cancer: a familiar face as the new standard in a hormone-sensitive setting. Ther Adv Med Oncol. 2017;9(5):307–18. https://doi.org/10.1177/1758834017692779.
Article
CAS
Google Scholar
Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987;7(5B):927–35.
CAS
Google Scholar
Chang S, O’Keefe D, Bacich D, Reuter V, Heston W, Gaudin P. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin Cancer Res. 1999;5(10):2674–81.
CAS
Google Scholar
O’Keefe DS, Bacich DJ, Huang SS, Heston WDW. A perspective on the evolving story of PSMA biology, PSMA-based imaging, and endoradiotherapeutic strategies. J Nucl Med. 2018;59(7):1007–13. https://doi.org/10.2967/jnumed.117.203877.
Article
CAS
Google Scholar
Benesová M, Schäfer M, Bauder-Wüst U, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56(6):914–20. https://doi.org/10.2967/jnumed.114.147413.
Article
CAS
Google Scholar
Kratochwil C, Giesel FL, Stefanova M, et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med. 2016;57(8):1170–6. https://doi.org/10.2967/jnumed.115.171397.
Article
CAS
Google Scholar
Sartor O, de Bono J, Chi KN, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate Cancer. N Engl J Med. 2021;385(12):1091–103. https://doi.org/10.1056/nejmoa2107322.
Article
CAS
Google Scholar
Teo MY, Morris MJ. Prostate-specific membrane antigen radiopharmaceuticals for metastatic castration-resistant prostate cancer. J Cancer. 2016;22(5):347–52. https://doi.org/10.1097/PPO.0000000000000221.
Article
CAS
Google Scholar
Conway RE, Rojas C, Alt J, et al. Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide. Angiogenesis. 2016;19(4):487–500. https://doi.org/10.1007/s10456-016-9521-x.
Article
CAS
Google Scholar
Schmidt S, Fracasso G, Colombatti M, Naim HY. Cloning and characterization of canine prostate-specific membrane antigen. Prostate. 2013;73(6):642–50. https://doi.org/10.1002/pros.22605.
Article
CAS
Google Scholar
Wagner S, Maibaum D, Pich A, Nolte I, Escobar HM. Verification of a canine PSMA (FolH1) antibody. Anticancer Res. 2015;35:145–8.
CAS
Google Scholar
Dowling M, Samuelson J, Fadl-Alla B, et al. Overexpression of prostate specific membrane antigen by canine hemangiosarcoma cells provides opportunity for the molecular detection of disease burdens within hemorrhagic body cavity effusions. PLoS One. 2019;14(1):1–20. https://doi.org/10.1371/journal.pone.0210297.
Article
CAS
Google Scholar
Lai CL, Van Den Ham R, Van Leenders G, Van Der Lugt J, Mol JA, Teske E. Histopathological and immunohistochemical characterization of canine prostate cancer. Prostate. 2008;68(5):477–88. https://doi.org/10.1002/pros.20720.
Article
Google Scholar
LeRoy BE, Northrup N. Prostate cancer in dogs: comparative and clinical aspects. Vet J. 2009;180(2):149–62. https://doi.org/10.1016/j.tvjl.2008.07.012.
Article
Google Scholar
Chevalier S, Moffett S, Turcotte E, et al. The dog prostate cancer (DPC-1) model: a reliable tool for molecular imaging of prostate tumors and metastases. EJNMMI Res. 2015;5(1):1–13. https://doi.org/10.1186/s13550-015-0155-6.
Article
CAS
Google Scholar
Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1(3):1112–6. https://doi.org/10.1038/nprot.2006.179.
Article
CAS
Google Scholar
AAT Bioquest Inc. Quest Graph™ IC50 Calculator. Accessed November 2, 2022. http://aatbio.com/tools/ic50-calculator
Dhawan D, Ramos-Vara JA, Stewart JC, Zheng R, Knapp DW. Canine invasive transitional cell carcinoma cell lines: in vitro tools to complement a relevant animal model of invasive urinary bladder cancer. Urol Oncol. 2009;27(3):284–92. https://doi.org/10.1016/j.urolonc.2008.02.015.
Article
CAS
Google Scholar
Simmons JK, Dirksen WP, Hildreth BE, et al. Canine prostate cancer cell line (Probasco) produces osteoblastic metastases in vivo. Prostate. 2014;74(13):1251–65. https://doi.org/10.1002/pros.22838.
Article
CAS
Google Scholar
Thudi NK, Shu ST, Martin CK, et al. Development of a brain metastatic canine prostate cancer cell line. Prostate. 2011;71(12):1251–63. https://doi.org/10.1002/pros.21341.
Article
CAS
Google Scholar
LeRoy BE, Thudi NK, Nadella MVP, et al. New bone formation and osteolysis by a metastatic, highly invasive canine prostate carcinoma xenograft. Prostate. 2006;67(11):1213–22. https://doi.org/10.1002/pros.20408.
Article
CAS
Google Scholar
Eaton CL, Pierrepoint CG. Growth of a spontaneous canine prostatic adenocarcinoma in vivo and in vitro: isolation and characterization of a neoplastic prostatic epithelial cell line, CPA 1. Prostate. 1988;12(2):129–43. https://doi.org/10.1002/pros.2990120204.
Article
CAS
Google Scholar
McEntee M, Silverman JA, Rassnick K, et al. Enhanced bioavailability of oral docetaxel by co-administration of cyclosporin a in dogs and rats. Vet Comp Oncol. 2003;1(2):105–12. https://doi.org/10.1046/j.1476-5829.2003.00015.x.
Article
CAS
Google Scholar
McEntee M, Rassnick K, Lewis L, et al. Phase I and pharmacokinetic evaluation of the combination of orally administered docetaxel and cyclosporin a in tumor-bearing dogs. Am J Vet Res. 2006;67(6):1057–62. https://doi.org/10.2460/ajvr.67.6.1057.
Article
CAS
Google Scholar
Kirsch M, Weisse C, Berent A, et al. Pilot study comparing serum chemotherapy levels after intra-arterial and intravenous administration in dogs with naturally occurring urinary tract tumors. Can J Vet Res. 2019;83:187–96.
CAS
Google Scholar
Creasey WA, Scott AI, Wei CC, Kutcher J, Schwartz A, Marsh JC. Pharmacological studies with vinblastine in the dog. Cancer Res. 1975;35:1116–20.
CAS
Google Scholar
Gala JL, Loric S, Guiot Y, et al. Expression of prostate-specific membrane antigen in transitional cell carcinoma of the bladder: prognostic value? Clin Cancer Res. 2000;6(10):4049–54.
CAS
Google Scholar
Gupta M, Choudhury PS, Gupta G, Gandhi J. Metastasis in urothelial carcinoma mimicking prostate cancer metastasis in Ga-68 prostate-specific membrane antigen positron emission tomography-computed tomography in a case of synchronous malignancy. Indian J Nucl Med. 2016;31(3):222–4. https://doi.org/10.4103/0972-3919.183615.
Article
Google Scholar
Schreiber H, Hänze J, Nimphius W, et al. Prostate specific membrane antigen (PSMA) in urothelial cell carcinoma (UCC) is associated with tumor grading and staging. J Cancer Res Clin Oncol. 2020;146(2):305–13. https://doi.org/10.1007/s00432-019-03113-9.
Article
CAS
Google Scholar
Tariq A, McCart Reed AE, Morton A, et al. Eur Urol Focus. 2022. https://doi.org/10.1016/j.euf.2021.07.016.
Zhao B, Dong A, Zuo C. Prostate-Specific Membrane Antigen–Avid Bone Metastases From Urothelial Carcinoma of the Bladder. Clin Nucl Med. 2022;(10):892–4. https://doi.org/10.1097/rlu.0000000000004246.
Rozolen JM, Teodoro TGW, Sobral RA, et al. Investigation of prognostic value of claudin-5, psma, and ki67 expression in canine splenic hemangiosarcoma. Animals. 2021;11(8). https://doi.org/10.3390/ani11082406.
Tang L, Tong R, Coyle VJ, et al. Targeting tumor vasculature with aptamer-functionalized doxorubicin-polylactide nanoconjugates for enhanced cancer therapy. ACS Nano. 2015;9(5):5072–81. https://doi.org/10.1021/acsnano.5b00166.
Article
CAS
Google Scholar
Wu LY, Johnson JM, Simmons JK, et al. Biochemical characterization of prostate-specific membrane antigen from canine prostate carcinoma cells. Prostate. 2014;74(5):451–7. https://doi.org/10.1002/pros.22727.
Article
CAS
Google Scholar
Waite A, Balkman C, Bailey D, et al. Phase II study of oral docetaxel and cyclosporine in canine epithelial cancer. Vet Comp Oncol. 2014;12(2):160–8. https://doi.org/10.1111/j.1476-5829.2012.00350.x.
Article
CAS
Google Scholar
Bohannan Z, Pudupakam RS, Koo J, et al. Predicting likelihood of in vivo chemotherapy response in canine lymphoma using ex vivo drug sensitivity and immunophenotyping data in a machine learning model. Vet Comp Oncol. 2021;19(1):160–71. https://doi.org/10.1111/vco.12656.
Article
CAS
Google Scholar