Duquet A, Melotti A, Mishra S, Malerba M, Seth C, Conod A, et al. A novel genome-wide in vivo screen for metastatic suppressors in human colon cancer identifies the positive WNT-TCF pathway modulators TMED3 and SOX12. EMBO Mol Med. 2014;6(7):882–901.
Article
CAS
Google Scholar
Baskerville A, Humphrey TJ, Fitzgeorge RB, Cook RW, Chart H, Rowe B, et al. Airborne infection of laying hens with Salmonella enteritidis phage type 4. Vet Rec. 1992;130(18):395–8.
Article
CAS
Google Scholar
Afshari A, Baratpour A, Khanzade S, Jamshidi A. Salmonella Enteritidis and Salmonella Typhimorium identification in poultry carcasses. Iran J Microbiol. 2018;10(1):45–50.
Google Scholar
Xin Y, Hongwei Z, Yongheng B, Youzhi L, Yue Z, Yang L, et al. Prevalence and antimicrobial resistance of Salmonella enterica subspecies enterica serovar Enteritidis isolated from broiler chickens in Shandong Province, China, 2013–2018. Poult Sci. 2021;100(2):1016–23.
Article
Google Scholar
Yao M, Gao W, Tao H, Yang J, Liu G, Huang T. Regulation signature of miR-143 and miR-26 in porcine Salmonella infection identified by binding site enrichment analysis. Mol Gen Genomics. 2016;291(2):789–99.
Article
CAS
Google Scholar
Samiullah CKK, Roberts JR, Sexton M, May D, Kiermeier A. Effects of egg shell quality and washing on Salmonella Infantis penetration. Int J Food Microbiol. 2013;165(2):77–83.
Article
CAS
Google Scholar
Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature. 2000;405(6788):827–36.
Article
CAS
Google Scholar
Sun H, Sun J, Li M, Qian L, Zhang L, Huang Z, et al. Transcriptome analysis of immune receptor activation and energy metabolism reduction as the underlying mechanisms in interleukin-6-induced skeletal muscle atrophy. Front Immunol. 2021;12:730070.
Article
CAS
Google Scholar
Van Goor A, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, Lamont SJ. Unique genetic responses revealed in RNA-seq of the spleen of chickens stimulated with lipopolysaccharide and short-term heat. PLoS One. 2017;12(2):e0171414.
Article
Google Scholar
Smits K, Coninck DIMD, Nieuwerburgh FV, Govaere J, Poucke MV, Peelman L, et al. The equine embryo influences immune-related gene expression in the oviduct1. Biol Reprod. 2016;94(2):36.
Article
Google Scholar
Wu G, Qi Y, Liu X, Yang N, Xu G, Liu L, et al. Cecal microRNAome response to Salmonella enterica serovar Enteritidis infection in white leghorn layer. BMC Genomics. 2017;18(1):77.
Article
Google Scholar
Perlas A, Argilaguet J, Bertran K, Sanchez-Gonzalez R, Nofrarias M, Valle R, et al. Dual host and pathogen RNA-seq analysis unravels chicken genes potentially involved in resistance to highly pathogenic avian influenza virus infection. Front Immunol. 2021;12:800188.
Article
CAS
Google Scholar
Asfor AS, Nazki S, Reddy V, Campbell E, Dulwich KL, Giotis ES, et al. Transcriptomic analysis of inbred chicken lines reveals infectious bursal disease severity is associated with greater bursal inflammation in vivo and more rapid induction of pro-inflammatory responses in primary bursal cells stimulated ex vivo. Viruses. 2021;13(5):933.
Article
CAS
Google Scholar
Matulova M, Varmuzova K, Sisak F, Havlickova H, Rychlik I. Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis. Vet Res. 2013;44(1):37.
Article
CAS
Google Scholar
Wu Z, Ding L, Bao J, Liu Y, Zhang Q, Wang J, et al. Co-infection of mycoplasma gallisepticum and Escherichia coli triggers inflammatory injury involving the IL-17 signaling pathway. Front Microbiol. 2019;10:2615.
Article
Google Scholar
Ma T, Nagy A, Xu G, Xin L, Bao D, Lu C, et al. RNA-Seq analysis of influenza a virus-induced transcriptional changes in mice lung and its possible implications for the virus pathogenicity in mice. Viruses. 2021;13(10):2031.
Article
CAS
Google Scholar
Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 2011;12(12):846–60.
Article
CAS
Google Scholar
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31.
Article
CAS
Google Scholar
Roberts JA, Sockett PN. The socio-economic impact of human Salmonella enteritidis infection. Int J Food Microbiol. 1994;21(1–2):117–29.
Article
CAS
Google Scholar
Hou Z, Zhang H, Xu K, Zhu S, Wang L, Su D, et al. Cluster analysis of splenocyte microRNAs in the pig reveals key signal regulators of immunomodulation in the host during acute and chronic toxoplasma gondii infection. Parasit Vectors. 2022;15(1):58.
Article
CAS
Google Scholar
Pashangzadeh S, Motallebnezhad M, Vafashoar F, Khalvandi A, Mojtabavi N. Implications the role of miR-155 in the pathogenesis of autoimmune diseases. Front Immunol. 2021;12:669382.
Article
CAS
Google Scholar
Li G, Wu Z, Li X, Ning X, Li Y, Yang G. Biological role of microRNA-103 based on expression profile and target genes analysis in pigs. Mol Biol Rep. 2011;38(7):4777–86.
Article
CAS
Google Scholar
Herrera BM, Lockstone HE, Taylor JM, Wills QF, Kaisaki PJ, Barrett A, et al. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of type 2 diabetes. BMC Med Genet. 2009;2(8):54.
Google Scholar
Haas BJ, Zody MC. Advancing RNA-Seq analysis. Nat Biotechnol. 2010;28(5):421–3.
Article
CAS
Google Scholar
Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW. Evolution of the chicken toll-like receptor gene family: a story of gene gain and gene loss. BMC Genomics. 2008;9:62.
Article
Google Scholar
Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010;327(5963):291–5.
Article
CAS
Google Scholar
Berghof TVL, Visker M, Arts JAJ, Parmentier HK, van der Poel JJ, Vereijken ALJ, et al. Genomic region containing toll-like receptor genes has a major impact on total IgM antibodies including KLH-binding IgM natural antibodies in chickens. Front Immunol. 2017;8:1879.
Article
Google Scholar
Huang Y, Temperley ND, Ren L, Smith J, Li N, Burt DW. Molecular evolution of the vertebrate TLR1 gene family--a complex history of gene duplication, gene conversion, positive selection and co-evolution. BMC Evol Biol. 2011;11:149.
Article
CAS
Google Scholar
Nihashi Y, Ono T, Kagami H, Takaya T. Toll-like receptor ligand-dependent inflammatory responses in chick skeletal muscle myoblasts. Dev Comp Immunol. 2019;91:115–22.
Article
CAS
Google Scholar
Ramasamy KT, Reddy MR, Verma PC, Murugesan S. Expression analysis of Turkey (Meleagris gallopavo) toll-like receptors and molecular characterization of avian specific TLR15. Mol Biol Rep. 2012;39(8):8539–49.
Article
CAS
Google Scholar
Velova H, Gutowska-Ding MW, Burt DW, Vinkler M. Toll-like receptor evolution in birds: gene duplication, pseudogenization, and diversifying selection. Mol Biol Evol. 2018;35(9):2170–84.
Article
CAS
Google Scholar
Yang J, Zhou M, Zhong Y, Xu L, Zeng C, Zhao X, et al. Gene duplication and adaptive evolution of toll-like receptor genes in birds. Dev Comp Immunol. 2021;119:103990.
Article
CAS
Google Scholar
Mitra T, Bramberger B, Bilic I, Hess M, Liebhart D. Vaccination against the protozoan parasite Histomonas meleagridis primes the activation of toll-like receptors in turkeys and chickens determined by a set of newly developed multiplex RT-qPCRs. Vaccines (Basel). 2021;9(9):960.
Article
CAS
Google Scholar
Shitashige M, Hirohashi S, Yamada T. Wnt signaling inside the nucleus. Cancer Sci. 2008;99(4):631–7.
Article
CAS
Google Scholar
Chen X, Ayala I, Shannon C, Fourcaudot M, Acharya NK, Jenkinson CP, et al. The diabetes gene and Wnt pathway effector TCF7L2 regulates adipocyte development and function. Diabetes. 2018;67(4):554–68.
Article
CAS
Google Scholar
Ip W, Shao W, Chiang YT, Jin T. The Wnt signaling pathway effector TCF7L2 is upregulated by insulin and represses hepatic gluconeogenesis. Am J Physiol Endocrinol Metab. 2012;303(9):E1166–76.
Article
CAS
Google Scholar
Jin GZ, Zhang Y, Cong WM, Wu X, Wang X, Wu S, et al. Phosphoglucomutase 1 inhibits hepatocellular carcinoma progression by regulating glucose trafficking. PLoS Biol. 2018;16(10):e2006483.
Article
Google Scholar
Abu BN, Voermans NC, Marquardt T, Thiel C, Janssen MCH, Hansikova H, et al. Intact transferrin and total plasma glycoprofiling for diagnosis and therapy monitoring in phosphoglucomutase-I deficiency. Transl Res. 2018;199:62–76.
Article
Google Scholar
Sun GR, Li M, Li GX, Tian YD, Han RL, Kang XT. Identification and abundance of miRNA in chicken hypothalamus tissue determined by Solexa sequencing. Genet Mol Res. 2012;11(4):4682–94.
Article
CAS
Google Scholar
Cui Q, Yu Z, Purisima EO, Wang E. Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol. 2006;2:46.
Article
Google Scholar
Nielsen M, Hansen JH, Hedegaard J, Nielsen RO, Panitz F, Bendixen C, et al. MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing. Anim Genet. 2010;41(2):159–68.
Article
CAS
Google Scholar
Liu Y, Zhang M, Shan Y, Ji G, Ju X, Tu Y, et al. miRNA-mRNA network regulation in the skeletal muscle fiber phenotype of chickens revealed by integrated analysis of miRNAome and transcriptome. Sci Rep. 2020;10(1):10619.
Article
CAS
Google Scholar
Yang J, Huang X, Liu Y, Zhao D, Han K, Zhang L, et al. Analysis of the microRNA expression profiles of chicken dendritic cells in response to H9N2 avian influenza virus infection. Vet Res. 2020;51(1):132.
Article
CAS
Google Scholar
Ammazzalorso A, Maccallini C, Amoia P, Amoroso R. Multitarget PPARgamma agonists as innovative modulators of the metabolic syndrome. Eur J Med Chem. 2019;173:261–73.
Article
CAS
Google Scholar
Takanabe R, Ono K, Abe Y, Takaya T, Horie T, Wada H, et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun. 2008;376(4):728–32.
Article
CAS
Google Scholar
Choi S.H., Chung S.S. and Park K.S. Re-highlighting the action of PPARgamma in treating metabolic diseases. F1000Res. 2018; 7 F1000 Faculty Rev-1127.
Gilardi F, Winkler C, Quignodon L, Diserens JG, Toffoli B, Schiffrin M, et al. Systemic PPARgamma deletion in mice provokes lipoatrophy, organomegaly, severe type 2 diabetes and metabolic inflexibility. Metabolism. 2019;95:8–20.
Article
CAS
Google Scholar
Li R, Xu X, Chen C, Wang Y, Gruzdev A, Zeldin DC, et al. CYP2J2 attenuates metabolic dysfunction in diabetic mice by reducing hepatic inflammation via the PPARgamma. Am J Physiol Endocrinol Metab. 2015;308(4):E270–82.
Article
CAS
Google Scholar
Lyu Z, Mao Z, Li Q, Xia Y, Liu Y, He Q, et al. PPARgamma maintains the metabolic heterogeneity and homeostasis of renal tubules. EBioMedicine. 2018;38:178–90.
Article
CAS
Google Scholar
Zhao E, Keller MP, Rabaglia ME, Oler AT, Stapleton DS, Schueler KL, et al. Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice. Mamm Genome. 2009;20(8):476–85.
Article
CAS
Google Scholar
Andersen DC, Jensen CH, Schneider M, Nossent AY, Eskildsen T, Hansen JL, et al. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes. Exp Cell Res. 2010;316(10):1681–91.
Article
CAS
Google Scholar
Sun LL, Jiang BG, Li WT, Zou JJ, Shi YQ, Liu ZM. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract. 2011;91(1):94–100.
Article
CAS
Google Scholar
Katayama M, Wiklander OPB, Fritz T, Caidahl K, El-Andaloussi S, Zierath JR, et al. Circulating exosomal miR-20b-5p is elevated in type 2 diabetes and could impair insulin action in human skeletal muscle. Diabetes. 2019;68(3):515–26.
Article
CAS
Google Scholar
Luo W, Li G, Yi Z, Nie Q, Zhang X. E2F1-miR-20a-5p/20b-5p auto-regulatory feedback loop involved in myoblast proliferation and differentiation. Sci Rep. 2016;6:27904.
Article
CAS
Google Scholar
Duarte I, Carraco G, de Azevedo NTD, Benes V, Andrade RP. Gga-miRNOME, a microRNA-sequencing dataset from chick embryonic tissues. Sci Data. 2022;9(1):29.
Article
CAS
Google Scholar
Bug DS, Tishkov AV, Moiseev IS, Petukhova NV. Evaluating the effect of 3′-UTR variants in DICER1 and DROSHA on their tissue-specific expression by miRNA target prediction. Curr Issues Mol Biol. 2021;43(2):605–17.
Article
CAS
Google Scholar
Luo Y, Alexander M, Gadina M, O'Shea JJ, Meylan F, Schwartz DM. JAK-STAT signaling in human disease: from genetic syndromes to clinical inhibition. J Allergy Clin Immunol. 2021;148(4):911–25.
Article
CAS
Google Scholar
McInnes IB, Szekanecz Z, McGonagle D, Maksymowych WP, Pfeil A, Lippe R, et al. A review of JAK-STAT signalling in the pathogenesis of spondyloarthritis and the role of JAK inhibition. Rheumatology (Oxford). 2021;61(5):1783–94.
Article
Google Scholar
Li Y, Wang Y, Chen Y, Wang Y, Zhang S, Liu P, et al. Corilagin ameliorates atherosclerosis in peripheral artery disease via the toll-like receptor-4 signaling pathway in vitro and in vivo. Front Immunol. 2020;11:1611.
Article
CAS
Google Scholar
Saikh KU, Ranji CM. Cells stimulated with more than one toll-like receptor-ligand in the presence of a MyD88 inhibitor augmented interferon-beta via MyD88-independent signaling pathway. Viral Immunol. 2021;34(9):646–52.
Article
CAS
Google Scholar
Li Z, Wu L, Tan W, Zhang K, Lin Q, Zhu J, et al. MiR-20b-5p promotes hepatocellular carcinoma cell proliferation, migration and invasion by down-regulating CPEB3. Ann Hepatol. 2021;23:100345.
Article
CAS
Google Scholar
Radenkovic S, Bird MJ, Emmerzaal TL, Wong SY, Felgueira C, Stiers KM, et al. The metabolic map into the pathomechanism and treatment of PGM1-CDG. Am J Hum Genet. 2019;104(5):835–46.
Article
CAS
Google Scholar
Zhang HM, Xia HL, Jiang HR, Mao YJ, Qu KX, Huang BZ, et al. Longissimus dorsi muscle transcriptomic analysis of Yunling and Chinese simmental cattle differing in intramuscular fat content and fatty acid composition. Genome. 2018;61(8):549–58.
Article
CAS
Google Scholar
Abou AF, Lim GE. Metabolic contributions of Wnt signaling: more than controlling flight. Front cell. Dev Biol. 2021;9:709823.
Google Scholar
Chen J, Ning C, Mu J, Li D, Ma Y, Meng X. Role of Wnt signaling pathways in type 2 diabetes mellitus. Mol Cell Biochem. 2021;476(5):2219–32.
Article
CAS
Google Scholar
Dias C, Pfundt R, Kleefstra T, Shuurs-Hoeijmakers J, Boon EMJ, van Hagen JM, et al. Novo variants in TCF7L2 are associated with a syndromic neurodevelopmental disorder. Am J Med Genet A. 2021;185(8):2384–90.
Article
CAS
Google Scholar
Mathilakathu A, Borchert S, Wessolly M, Mairinger E, Beckert H, Steinborn J, et al. Mitogen signal-associated pathways, energy metabolism regulation, and mediation of tumor immunogenicity play essential roles in the cellular response of malignant pleural mesotheliomas to platinum-based treatment: a retrospective study. Transl Lung Cancer Res. 2021;10(7):3030–42.
Article
CAS
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51.
Article
CAS
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–51.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
Google Scholar
Clement JG, Winship V, Ceddia J, Al-Amad S, Morales A, Hill AJ. New software for computer-assisted dental-data matching in disaster victim identification and long-term missing persons investigations: "DAVID web". Forensic Sci Int. 2006;159(Suppl 1):S24–9.
Article
Google Scholar
Berkman SJ, Roscoe EM, Bourret JC. Comparing self-directed methods for training staff to create graphs using Graphpad prism. J Appl Behav Anal. 2019;52(1):188–204.
Article
Google Scholar