Burns ME, Baylor DA. Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annu Rev Neurosci. 2001;24:779–805.
Article
PubMed
CAS
Google Scholar
Arshavsky VY, Lamb TD, Pugh EN. G Proteins and Phototransduction. Annu Rev Physiol. 2002;64(1):153–87.
Article
PubMed
CAS
Google Scholar
Hagins WA, Penn RD, Yoshikami S. Dark Current and Photocurrent in Retinal Rods. Biophys J. 1970;10(5):380–412.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fain GL, Matthews HR, Cornwall MC, Koutalos Y. Adaptation in vertebrate photoreceptors. Physiol Rev. 2001;81(1):117–51.
Article
PubMed
CAS
Google Scholar
Hood DC, Birch DG. Phototransduction in human cones measured using the a-wave of the ERG. Vision Res. 1995;35(20):2801–10.
Article
PubMed
CAS
Google Scholar
Kraft TW, Schneeweis DM, Schnapf JL. Visual transduction in human rod photoreceptors. J Physiol. 1993;464:747–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thomas MM, Lamb TD. Light adaptation and dark adaptation of human rod photoreceptors measured from the a-wave of the electroretinogram. J Physiol. 1999;518(Pt 2):479–96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Euler T, Haverkamp S, Schubert T, Baden T. Retinal bipolar cells: elementary building blocks of vision. Nat Rev Neurosci. 2014;15(8):507–19.
Article
PubMed
CAS
Google Scholar
Nelson R, Kolb H. ON and OFF pathways in the vertebrate retina and visual system. The visual neurosciences 2004;1:260-278.
Wässle H. Parallel processing in the mammalian retina. Nat Rev Neurosci. 2004;5(10):747–57.
Article
PubMed
Google Scholar
Duvoisin RM, Morgans C, Taylor W. The mGluR6 receptors in the retina: Analysis of a unique G-protein signaling pathway. Cellscience Rev. 2005;2(2):18.
Google Scholar
Thoreson WB. Kinetics of synaptic transmission at ribbon synapses of rods and cones. Mol Neurobiol. 2007;36(3):205–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rufiange M, Rousseau S, Dembinska O, Lachapelle P. Cone-dominated ERG luminance–response function: the Photopic Hill revisited. Doc Ophthalmol. 2002;104(3):231–48.
Article
PubMed
Google Scholar
Wali N, Leguire LE. The photopic hill: A new phenomenon of the light adapted electroretinogram. Doc Ophthalmol. 1992;80(4):335–42.
Article
PubMed
CAS
Google Scholar
Sieving PA, Murayama K, Naarendorp F. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci. 1994;11(3):519–32.
Article
PubMed
CAS
Google Scholar
Bloomfield SA, Dacheux RF. Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res. 2001;20(3):351–84.
Article
PubMed
CAS
Google Scholar
Deans MR, Volgyi B, Goodenough DA, Bloomfield SA, Paul DL. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron. 2002;36(4):703–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hornstein EP, Verweij J, Li PH, Schnapf JL. Gap-junctional coupling and absolute sensitivity of photoreceptors in macaque retina. J Neurosci Off J Soc Neurosci. 2005;25(48):11201–9.
Article
CAS
Google Scholar
Schneeweis DM, Schnapf JL. Photovoltage of rods and cones in the macaque retina. Science. 1995;268(5213):1053–6.
Article
PubMed
CAS
Google Scholar
Verweij J, Dacey DM, Peterson BB, Buck SL. Sensitivity and dynamics of rod signals in H1 horizontal cells of the macaque monkey retina. Vision Res. 1999;39(22):3662–72.
Article
PubMed
CAS
Google Scholar
Bush RA, Sieving PA. A proximal retinal component in the primate photopic ERG a-wave. Invest Ophthalmol Vis Sci. 1994;35(2):635–45.
PubMed
CAS
Google Scholar
Robson JG, Saszik SM, Ahmed J, Frishman LJ. Rod and cone contributions to the a-wave of the electroretinogram of the macaque. J Physiol. 2003;547(Pt 2):509–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cameron AM, Mahroo OAR, Lamb TD. Dark adaptation of human rod bipolar cells measured from the b-wave of the scotopic electroretinogram. J Physiol. 2006;575(Pt 2):507–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robson JG, Maeda H, Saszik SM, Frishman LJ. In vivo studies of signaling in rod pathways of the mouse using the electroretinogram. Vision Res. 2004;44(28):3253–68.
Article
PubMed
CAS
Google Scholar
Naarendorp F, Williams GE. The d -wave of the rod electroretinogram of rat originates in the cone pathway. Vis Neurosci. 1999;16(1):91–105.
Article
PubMed
CAS
Google Scholar
Xu X, Karwoski C. Current source density analysis of the electroretinographic d wave of frog retina. J Neurophysiol. 1995;73(6):2459–69.
Article
PubMed
CAS
Google Scholar
Lei B. The ERG of guinea pig (Cavis porcellus): comparison with I-type monkey and E-type rat. Doc Ophthalmol. 2003;106(3):243–9.
Article
PubMed
Google Scholar
Kondo M, Miyake Y, Horiguchi M, Suzuki S, Tanikawa A. Recording Multifocal Electroretinogram On and Off Responses in Humans. Invest Ophthalmol Vis Sci. 1998;39(3):7.
Google Scholar
Ueno S, Kondo M, Ueno M, Miyata K, Terasaki H, Miyake Y. Contribution of retinal neurons to d-wave of primate photopic electroretinograms. Vision Res. 2006;46(5):658–64.
Article
PubMed
Google Scholar
Granit R. The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J Physiol. 1933;77(3):207–39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Müller F, Kaupp UB. Signal transduction in photoreceptor cells. Naturwissenschaften. 1998;85(2):49–61.
Article
PubMed
Google Scholar
Green DG. Scotopic and photopic components of the rat electroetinogram. J Physiol. 1973;228(3):781–97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Granit R, Therman PO. Excitation and inhibition in the retina and in the optic nerve. J Physiol. 1935;83(3):359–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wündsch L, Lützow AV. The effect of aspartate on the ERG of the isolated rabbit retina. Vision Res. 1971;11(10):1207–8.
Article
PubMed
Google Scholar
Vinberg FJ, Strandman S, Koskelainen A. Origin of the fast negative ERG component from isolated aspartate-treated mouse retina. J Vis. 2009;9(12):9–9.
Article
Google Scholar
Arden GB. Voltage gradients across the receptor layer of the isolated rat retina. J Physiol. 1976;256(2):333-360.1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hanawa I, Tateishi T. The effect of aspartate on the electroretinogram of the vertebrate retina. Experientia. 1970;26(12):1311–2.
Article
PubMed
CAS
Google Scholar
Veske A, Nilsson SE, Narfström K, Gal A. Retinal dystrophy of Swedish briard/briard-beagle dogs is due to a 4-bp deletion in RPE65. Genomics. 1999;57(1):57–61.
Article
PubMed
CAS
Google Scholar
Kondo M, Das G, Imai R, Santana E, Nakashita T, Imawaka M, et al. A Naturally Occurring Canine Model of Autosomal Recessive Congenital Stationary Night Blindness. PLoS ONE. 2015;10(9):e0137072.
Article
PubMed
PubMed Central
Google Scholar
Somma AT, Moreno JCD, Sato MT, Rodrigues BD, Bacellar-Galdino M, Occelli LM, et al. Characterization of a novel form of progressive retinal atrophy in Whippet dogs: a clinical, electroretinographic, and breeding study. Vet Ophthalmol. 2017;20(5):450–9.
Article
PubMed
CAS
Google Scholar
Marinho LLP, Occelli LM, Pasmanter N, Somma AT, Montiani-Ferreira F, Petersen-Jones SM. Autosomal recessive night blindness with progressive photoreceptor degeneration in a dog model. Invest Ophthalmol Vis Sci. 2019;60(9):465–465.
Google Scholar
Petersen-Jones SM, Occelli LM, Winkler PA, Lee W, Sparrow JR, Tsukikawa M, et al. Patients and animal models of CNGβ1-deficient retinitis pigmentosa support gene augmentation approach. J Clin Invest. 2018;128(1):190–206.
Article
PubMed
Google Scholar
Occelli LM, Schön C, Seeliger MW, Biel M, Michalakis S, Petersen-Jones S, et al. Gene Supplementation Rescues Rod Function and Preserves Photoreceptor and Retinal Morphology in Dogs, Leading the Way Towards Treating Human PDE6A-Retinitis Pigmentosa. Hum Gene Ther. 2018;28(12)1189-201.
Petersen-Jones SM, Komáromy AM. Dog models for blinding inherited retinal dystrophies. Hum Gene Ther Clin Dev. 2015;26(1):15–26.
Article
PubMed
CAS
Google Scholar
Pasmanter N, Petersen-Jones SM. A review of electroretinography waveforms and models and their application in the dog. Vet Ophthalmol. 2020;23(3):418–35.
Article
PubMed
Google Scholar
Oh A, Loew ER, Foster ML, Davidson MG, English RV, Gervais KJ, Herring IP, Mowat FM. Phenotypic characterization of complete CSNB in the inbred research beagle: how common is CSNB in research and companion dogs? Doc Ophthalmol. 2018;137(2):87–101.
Article
PubMed
Google Scholar
Donner K. Noise and the absolute thresholds of cone and rod vision. Vision Res. 1992;32(5):853–66.
Article
PubMed
CAS
Google Scholar
Dunn FA, Doan T, Sampath AP, Rieke F. Controlling the gain of rod-mediated signals in the Mammalian retina. J Neurosci Off J Soc Neurosci. 2006;26(15):3959–70.
Article
CAS
Google Scholar
Frishman LJ, Robson JG, Reddy MG. Effects of background light on the human dark-adapted electroretinogram and psychophysical threshold. J Opt Soc Am A. 1996;13(3):601.
Article
CAS
Google Scholar
Shapley R, Enroth-Cugell C. Chapter 9 Visual adaptation and retinal gain controls. Prog Retin Res. 1984;3:263–346.
Article
Google Scholar
Annear MJ, Bartoe JT, Barker SE, Smith AJ, Curran PG, Bainbridge JW, et al. Gene therapy in the second eye of RPE65-deficient dogs improves retinal function. Gene Ther. 2011;18(1):53–61.
Article
PubMed
CAS
Google Scholar
Brigell M, Jeffrey BG, Mahroo OA, Tzekov R. ISCEV extended protocol for derivation and analysis of the strong flash rod-isolated ERG a-wave. Doc Ophthalmol. 2020;140(1):5–12.
Article
PubMed
Google Scholar
Hood DC, Birch DG. Assessing abnormal rod photoreceptor activity with the a-wave of the electroretinogram: Applications and methods. Doc Ophthalmol. 1996;92(4):253–67.
Article
PubMed
Google Scholar
Hood DC, Birch DG. The A-wave of the human electroretinogram and rod receptor function. Invest Ophthalmol Vis Sci. 1990;31(10):2070–81.
PubMed
CAS
Google Scholar
Van Rossum G, Drake FL. Python 3 Reference Manual. Scotts Valley: CreateSpace; 2009.
Newville M, Stensitzki T, Allen DB, Ingargiola A. LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python. Zenodo; 2014 [cited 2020 Jan 20]. Available from: https://zenodo.org/record/11813
Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math. 1944;2(2):164–8.
Article
Google Scholar
Marquardt DW. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J Soc Ind Appl Math. 1963;11(2):431–41.
Article
Google Scholar