Riahi I, Marquis V, Ramos AJ, Brufau J, Esteve-Garcia E, Pérez-Vendrell AM. Effects of Deoxynivalenol-contaminated diets on productive, morphological, and physiological indicators in broiler Chickens. Animals (Basel). 2020;10:1795.
Article
Google Scholar
Bushnell WR, Perkins-Veazie P, Russo VM, Collins J, Seeland TM. Effects of deoxynivalenol on content of chloroplast pigments in barley leaf tissues. Phytopathol. 2010;100:33–41.
Article
CAS
Google Scholar
Singh S, Banerjee S, Chattopadhyay P, Borthakur SK, Veer V. Deoxynivalenol induces cytotoxicity and genotoxicity in animal primary cell culture. Toxicol Mech Methods. 2015;25:184–91.
Article
CAS
PubMed
Google Scholar
Diesing AK, Nossol C, Panther P, Walk N, Post A, Kluess J, et al. Mycotoxin deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2. Toxicol Lett. 2011;200:8–18.
Article
CAS
PubMed
Google Scholar
Liao Y, Peng Z, Chen L, Nüssler AK, Liu L, Yang W. Deoxynivalenol, gut microbiota and immunotoxicity: A potential approach? Food Chem Toxicol. 2018;112:342–54.
Article
CAS
PubMed
Google Scholar
Pestka JJ. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit Contam. 2008;25:1128–40.
Article
CAS
Google Scholar
Girish CK, MacDonald EJ, Scheinin M, Smith TK. Effects of feedborne fusarium mycotoxins on brain regional neurochemistry of turkeys. Poult Sci. 2008;87:1295–302.
Article
CAS
PubMed
Google Scholar
Wang X, Chen X, Cao L, et al. Mechanism of deoxynivalenol-induced neurotoxicity in weaned piglets is linked to lipid peroxidation, dampened neurotransmitter levels, and interference with calcium signaling. Ecotoxicol Environ Saf. 2020;194:110382.
Article
CAS
PubMed
Google Scholar
Levkut M, Revajova V, Slaminkova Z, Levkutova M, Borutova R, Gresakova L, et al. Lymphocyte subpopulations in blood and duodenal epithelium of broilers fed diets contaminated with deoxynivalenol and zearalenone. Anim Feed Sci Tech. 2011;165:210–7.
Article
CAS
Google Scholar
Yang X, Liang S, Guo F, Ren Z, Yang X, Long F. Gut microbiota mediates the protective role of Lactobacillus plantarum in ameliorating deoxynivalenol-induced apoptosis and intestinal inflammation of broiler chickens. Poult Sci. 2020;99:2395–406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu YH, Hsiao FS, Proskura WS, Dybus A, Siao YH, Cheng YH. An impact of Deoxynivalenol produced by Fusarium graminearum on broiler chickens. J Anim Physiol Anim Nutr (Berl). 2018;102:1012–9.
Article
CAS
Google Scholar
Jin L, Wang W, Degroote J, Van Noten N, Yan H, Majdeddin M, et al. Mycotoxin binder improves growth rate in piglets associated with reduction of toll-like receptor-4 and increase of tight junction protein gene expression in gut mucosa. J Anim Sci Biotechnol. 2017;8:80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Awad WA, Ruhnau D, Hess C, Doupovec B, Schatzmayr D, Hess M. Feeding of deoxynivalenol increases the intestinal paracellular permeability of broiler chickens. Arch Toxicol. 2019;93:2057–64.
Article
CAS
PubMed
Google Scholar
Payros D, Alassane-Kpembi I, Pierron A, Loiseau N, Pinton P, Oswald IP. Toxicology of deoxynivalenol and its acetylated and modified forms. Arch Toxicol. 2016;90:2931–57.
Article
CAS
PubMed
Google Scholar
Bai M, Wang L, Liu H, Xu K, Deng J, Huang R, et al. Imbalanced dietary methionine-to-sulfur amino acid ratio can affect amino acid profiles, antioxidant capacity, and intestinal morphology of piglets. Anim Nutr. 2020;6:447–56.
Article
PubMed
PubMed Central
Google Scholar
Liao XD, Ma G, Cai J, Fu Y, Yan XY, Wei XB, et al. Effects of Clostridium butyricum on growth performance, antioxidation, and immune function of broilers. Poult Sci. 2015;94:662–7.
Article
CAS
PubMed
Google Scholar
Guan Y, Watson AJ, Marchiando AM, Bradford E, Shen L, Turner JR, et al. Redistribution of the tight junction protein ZO-1 during physiological shedding of mouse intestinal epithelial cells. Am J Physiol Cell Physiol. 2011;300:C1404–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vangsøe CT, Bonnin E, Joseph-Aime M, Saulnier L, Neugnot-Roux V, Bach Knudsen KE. Improving the digestibility of cereal fractions of wheat, maize, and rice by a carbohydrase complex rich in xylanases and arabinofuranosidases: an in vitro digestion study. J Sci Food Agric. 2021;101:1910–9.
Article
PubMed
CAS
Google Scholar
Xie XX, Meng QX, Liu P, Wu H, Li SR, Ren LP, et al. Effects of a mixture of steam-flaked corn and extruded soybeans on performance, ruminal development, ruminal fermentation, and intestinal absorptive capability in veal calves. J Anim Sci. 2013;91:4315–21.
Article
CAS
PubMed
Google Scholar
Yuan J, Wang X, Yin D, Wang M, Yin X, Lei Z, et al. Effect of different amylases on the utilization of cornstarch in broiler chickens. Poult Sci. 2017;96:1139–48.
Article
CAS
PubMed
Google Scholar
Ehrmann M, Clausen T. Proteolysis as a regulatory mechanism. Annu Rev Genet. 2004;38:709–24.
Article
CAS
PubMed
Google Scholar
Ross SD, Behrens JW, Brander K, Methling C, Mork J. Haemoglobin genotypes in cod (Gadus morhua L): their geographic distribution and physiological significance. Comp Biochem Physiol A Mol Integr Physiol. 2013;166:158–68.
Article
CAS
PubMed
Google Scholar
Tilg H, Adolph TE. Influence of the human intestinal microbiome on obesity and metabolic dysfunction. Curr Opin Pediatr. 2015;27:496–501.
Article
CAS
PubMed
Google Scholar
Possemiers S, Bolca S, Verstraete W, Heyerick A. The intestinal microbiome: a separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia. 2011;82:53–66.
Article
CAS
PubMed
Google Scholar
Apajalahti J, Kettunen A, Graham H. Characteristics of the gastrointestinal microbial communities, with special reference to the broilers. World Poultry Sci J. 2004;60:223–32.
Article
Google Scholar
Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, et al. The chicken gastrointestinal microbiome. FEMS Microbiol Lett. 2014;360:100–12.
Article
CAS
PubMed
Google Scholar
Qu A, Brulc JM, Wilson MK, Law BF, Theoret JR, Joens LA, et al. Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS ONE. 2008;3:e2945.
Article
PubMed
PubMed Central
CAS
Google Scholar
Davis JJ, Xia F, Overbeek RA, Olsen GJ. Genomes of the class Erysipelotrichia clarify the firmicute origin of the class Mollicutes. Int J Syst Evol Microbiol. 2013;63:2727–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pindjakova J, Sartini C, Lo Re O, Rappa F, Coupe B, Lelouvier B, et al. Gut dysbiosis and adaptive immune response in diet-induced obesity vs. systemic inflammation. Front microbiol. 2017;8:1157.
Article
PubMed
PubMed Central
Google Scholar
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.
Article
PubMed
Google Scholar
Hong PY, Wu JH, Liu WT. Relative abundance of Bacteroides spp. in stools and wastewaters as determined by hierarchical oligonucleotide primer extension. Appl Environ Microbiol. 2008;74:2882–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut. 2014;63:1513–21.
Article
CAS
PubMed
Google Scholar
Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M. Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol. 2007;73:179–85.
Article
CAS
PubMed
Google Scholar
Liu X, Diarra MS, Zhang Y, Wang Q, Yu H, Nie SP, et al. Effect of encapsulated carvacrol on the incidence of necrotic enteritis in broiler chickens. Avian Pathol. 2016;45:357–64.
Article
CAS
PubMed
Google Scholar
Collier CT, Van der Klis JD, Deplancke B, Anderson DB, Gaskins HR. Effects of tylosin on bacterial mucolysis, Clostridium perfringens colonization, and intestinal barrier function in a chick model of necrotic enteritis. Antimicrob Agents Chemother. 2003;47:3311–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pieniazek F, Messina V. Scanning electron microscopy combined with image processing technique: Analysis of microstructure, texture and tenderness in Semitendinous and Gluteus Medius bovine muscles. Scanning. 2016;38:727–34.
Article
CAS
PubMed
Google Scholar
Yi Y, Wan S, Hou Y, Cheng J, Guo J, Wang S, et al. Chlorogenic acid rescues zearalenone induced injury to mouse ovarian granulosa cells. Ecotoxicol Environ Saf. 2020;194:110401.
Article
CAS
PubMed
Google Scholar
Du B, Liu X, Khan A, Wan S, Guo X, Xue J, et al. miRNA-183∼96∼182 regulates melanogenesis, cell proliferation and migration in B16 cells. Acta Histochem. 2020;122:151508.
Article
CAS
PubMed
Google Scholar
Xu Y, Sun P, Wan S, Guo J, Zheng X, Sun Y, et al. The combined usage of Matrine and Osthole inhibited endoplasmic reticulum apoptosis induced by PCV2. BMC Microbiol. 2020;20:303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao J, Wan S, Sun N, Sun P, Sun Y, Khan A, Guo J, Zheng X, Fan K, Yin W, Li H. Damage to intestinal barrier integrity in piglets caused by porcine reproductive and respiratory syndrome virus infection. Vet Res. 2021;52(1):93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.
Article
PubMed
PubMed Central
CAS
Google Scholar