Imam MAR, Dorina M, Mohamed S, Ayman A, Monica M. Rabbits meat production in Egypt and its impact on food security, small holders income and economy. Agri Res Tech Open Access J. 2020;23(5):556251. https://doi.org/10.19080/ARTOAJ.2020.22.556251.
Article
Google Scholar
Milanovic V, Radovanovic A, Vasilijic S, Mrvic V, Milosevic B. Histological and immunological changes in uterus during the different reproductive stages at Californian rabbit (Oryctolagus cuniculus). Kafkas Univ Vet Fak Derg. 2017;23:137–44. https://doi.org/10.9775/kvfd.2016.16008.
Article
Google Scholar
Al-Saffar FJ, Almayahi MS. Structural study of uterine tubes of the rabbit (Oryctolagus cuniculus) at different postnatal periods. Iraqi J of Vet Sci. 2019;33:277–88. https://doi.org/10.33899/ijvs.2019.162911.
Article
Google Scholar
Nicholls PK, Sun Z, Heng S, Li Y, Wang J, Nie G. Embryo implantation is closely associated with dynamic expression of proprotein convertase 5/6 in the rabbit uterus. Reprod Biol Endocrinol. 2011;9:43–53. https://doi.org/10.1186/1477-7827-9-43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Saffar FJ, Almayahi MS. Histomorphological postnatal developmental study of the ovaries of the local rabbits (Oryctologus Cuniculus). Bas J Vet Res. 2018a;17(2):124–46.
Google Scholar
Mogheiseh A, Derakhshandeh A, Batebi E, Golestani N, Moshiri A. Co-relation of estrous cycle phases with uterine bacterial and fungal flora in non-pregnant female laboratory rabbits. Iran J Vet Res. 2017;18(2):128–33.
Hoffman KL, Gonzales-Mariscal G. Relevance of ovarian signaling for the early behavioral transition from estrus to pregnancy in the female rabbit. Horm Behav. 2007;52:531–9. https://doi.org/10.1016/j.yhbeh.2007.07.007.
Article
CAS
PubMed
Google Scholar
Bakker J, Baum JM. Neuroendocrine regulation of GnRH release in induced Ovulators. Front Neuroendocrinol. 2000;21:220–62. https://doi.org/10.1006/frne.2000.0198.
Article
CAS
PubMed
Google Scholar
Rebollar PG, Boscon DA, Millan P, Cardinalli R, Brecchia G, Sylla L, et al. Ovulating inducing methods in rabbit does: the pituitary and ovarian responses. Theriogenology. 2012;77:292–8. https://doi.org/10.1016/j.theriogenology.2011.07.041.
Article
CAS
PubMed
Google Scholar
Arce SRA, Gaona HV, Perez-Martinez M. Variation in distribution of interstitial and epithelial lymphocytes in female uterine tubes of rabbit during early stages of pregnancy. Tec Pecu Mex. 2008;46:333–44.
Google Scholar
Arai M, Yoshioka S, Tasaki Y, Okuda K. Remodeling of bovine endometrium throughout the estrous cycle. Anim Reprod Sci. 2013;142:1–9. https://doi.org/10.1016/j.anireprosci.2013.08.003.
Article
CAS
PubMed
Google Scholar
Lupicka M, Zadroga A, Szczepańska A, Korzekwa AJ. Effect of ovarian steroids on vascular endothelial growth factor a expression in bovine uterine endothelial cells during adenomyosis. BMC Vet Res. 2019;15:473. https://doi.org/10.1186/s12917-019-2222-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gargett CE, Rogers PA. Human endometrial angiogenesis. Reproduction. Endometrial endothelial cells express estrogen and progesterone receptors and exhibit a tissue specific response to angiogenic growth factors, vol. 121; 2001. p. 181–6.
Google Scholar
Hervé MA, Meduri G, Petit FG, et al. Regulation of the vascular endothelial growth factor (VEGF) receptor Flk-1/KDR by estradiol through VEGF in uterus. J Endocrinol. 2006;188(1):91–9. https://doi.org/10.1677/joe.1.06184.
Article
CAS
PubMed
Google Scholar
Huang TS, Chen YJ, Chou TY, Chen CY, Li HY, Huang BS, et al. Oestrogen induced angiogenesis promotes adenomyosis by activating the slug-VEGF axis in endometrial epithelial cells. J Cell Mol Med. 2014;18:1358–71. https://doi.org/10.1111/jcmm.12300 PMID: 24758741.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geva E, Jaffe RB. Role of vascular endothelial growth factor in ovarian physiology and pathology. Fertil Steril. 2000;74:429–38. https://doi.org/10.1016/s0015-0282(00)00670-1 PMID: 10973633.
Article
CAS
PubMed
Google Scholar
Sag˘söz H, Saruhan BG. The expression of vascular endothelial growth factor and its receptors (flt1/fms, flk1/KDR, flt4) and vascular endothelial growth inhibitor in the bovine uterus during the sexual cycle and their correlation with serum sex steroids. Theriogenology. 2011;75:1720–34. https://doi.org/10.1016/j.theriogenology.2011.01.012.
Article
CAS
Google Scholar
Kudsy M, Alhalabi M, Al-Quobaili F. Follicular fluid vascular endothelial growth factor (VEGF) could be a predictor for pregnancy outcome in normo-responders and polycystic ovary syndrome women undergoing IVF/ICSI treatment cycles. Middle East Fertil Soc J. 2016;21:52–6. https://doi.org/10.1016/j.mefs.2015.11.001.
Article
Google Scholar
Peach CJ, Mignone VW, Arruda MA, et al. Molecular pharmacology of VEGF-A isoforms: binding and Signalling at VEGFR2. Int J Mol Sci. 2018;19(4):1264. https://doi.org/10.3390/ijms19041264.
Article
CAS
PubMed Central
Google Scholar
Devesa J, Díaz MJ, Odriozola A, Arce V, Lima L. Neurorregulación de la secreción de hormona de crecimiento (GH) y expresión del gen de esta hormona en pro- y eucariotas. Endocrinología. 1991;38:33–41.
Google Scholar
Silveira MA, Zampieri TT, Furigo IC, Abdulkader F, Donato J Jr, Frazao R. Acute effects of somatomammotropin hormones on neuronal components of the hypothalamic-pituitary-gonadal axis. Brain Res. 2019;1714:210–7. https://doi.org/10.1016/j.brainres.2019.03.003.
Article
CAS
PubMed
Google Scholar
Devesa J, Caicedo D. The role of growth hormone on ovarian functioning and ovarian angiogenesis. Front Endocrinol. 2019;10:450. https://doi.org/10.3389/fendo.2019.00450.
Article
Google Scholar
Kaczmarek MM, Schams D, Ziecik AJ. Role of vascular endothelial growth factor in ovarian physiology - an overview. Reprod Biol. 2005;5(2):111–36 PMID: 16100562.
PubMed
Google Scholar
Yakar S, Adamo ML. Insulin-like growth factor 1 physiology: lessons from mouse models. Endocrinol Metab Clin N Am. 2012;41(2):231–v. https://doi.org/10.1016/j.ecl.2012.04.008.
Article
CAS
Google Scholar
Uniyal S, Panda RP, Chouhan VS, Yadav VP, Hyder I, Dangi SS, et al. Expression and localization of insulin-like growth factor system in corpus luteum during different stages of estrous cycle in water buffaloes (Bubalus bubalis) and the effect of insulin-like growth factor I on production of vascular endothelial growth factor and progesterone in luteal cells cultured in vitro. Theriogenology. 2015;83(1):58–77. https://doi.org/10.1016/j.theriogenology.2014.07.034 Epub 2014 Aug 1. PMID: 25304995.
Article
CAS
PubMed
Google Scholar
Critchley HO, Saunders PT. Hormone receptor dynamics in a receptive human endometrium. Reprod Sci. 2009;16(2):191–9. https://doi.org/10.1177/1933719108331121.
Article
CAS
PubMed
Google Scholar
Holm A, Nilsson BO. Identification and characterization of new mechanisms in vascular oestrogen signalling. Basic Clin Pharmacol Toxicol. 2013;113:287–93. https://doi.org/10.1111/bcpt.12118 PMID: 23953673.
Article
CAS
PubMed
Google Scholar
Pathak D, Bansal N, Singh O, Gupta K, Ghuman SPS. Immuno localization of estrogen receptor (ERα) and progesterone receptor (PR) in uterus of Buffalo during follicular and luteal phases of estrous cycle. J Anim Res. 2019;9:185–93. https://doi.org/10.30954/2277-940X.01.2019.26.
Article
Google Scholar
Abd-Elkareem MD. Morphological, histological and Immunohistochemical study of the rabbit uterus during Pseudopregnancy. J Cytol Histol. 2017;8:443. https://doi.org/10.4172/2157-7099.1000443.
Article
CAS
Google Scholar
Abdelnaby EA, Abo El-Maaty AM. Melatonin and CIDR improved the follicular and luteal haemodynamics, uterine and ovarian arteries vascular perfusion, ovarian hormones and nitric oxide in cyclic cows. Reprod Dom Anim. 2021;56:498–510. https://doi.org/10.1111/rda.13888.
Article
CAS
Google Scholar
Snyder GD, Holmes RW, Bates JN. Nitric oxide inhibitsaromatase activity: mechanisms of action. J Steroid Biochem Molec Biol. 1996;58:63–9.
Article
CAS
Google Scholar
Abdelnaby EA, Abo El-Maaty AM. Effect of the side of ovulation on the uterine morphometry, blood flow, progesterone, oestradiol and nitric oxide during spontaneous and induced oestrus in lactating dairy cows. Reprod Dom Anim. 2020;(55):851–60. https://doi.org/10.1111/rda.13693.
Abdelnaby EA, Abo El-Maaty AM. Luteal blood flow and growth in correlation to circulating angiogenic hormones after spontaneous ovulation in mares. Bulg J Vet Med. 2017;20(2):97–109.
Article
Google Scholar
Armero E, Garcia-Ximenez F, Vicente JS, Baselga M. Cycle synchronization of rabbit does naturally mated or artificially inseminated. World Rabbit Sci. 1994;2:107–13. https://doi.org/10.4995/wrs.1994.225.
Article
Google Scholar
Abdelnaby EA. Testicular haemodynamics, plasma testosterone and oestradiol concentrations, and serum nitric oxide levels in the Egyptian buffalo bull after a single administration of human chorionic gonadotropin. Reprod Domest Anim. 2022 Mar 30. https://doi.org/10.1111/rda.14117 Epub ahead of print. PMID: 35352415.
Hashem NM, EL-Sherbiny HR, Fathi M, Abdelnaby EA. Nanodelivery system for Ovsynch protocol improves ovarian response, ovarian blood flow Doppler velocities, and hormonal profile of goats. Animals. 2022;12(1442). https://doi.org/10.3390/ani12111442.
El-Sherbiny HR, Fathi M, Samir H, Abdelnaby EA. Supplemental dietary curcumin improves testicular hemodynamics, testosterone levels, and semen quality in Baladi bucks in the non-breeding season. Theriogenology. 2022;188:100–7. https://doi.org/10.1016/j.theriogenology.2022.05.020 Epub ahead of print. PMID: 356880.
Article
PubMed
Google Scholar
El-Bably SH, Abouelela YS. Anatomical and radiographical studies on heart of red fox (Vulpes vulpes) with special references to its coronary arteries. Adv Anim Vet Sci. 2021;9(5):754–60. https://doi.org/10.17582/journal.aavs/2021/9.8.1159.1168.
Article
Google Scholar
Considine RV, Sinha MK. Serum Immunoreactive- leptin concentrations in Normal weight and obese humans. N Engl J Med. 1996;28:573–81.
Google Scholar
Abo El-Maaty AM, Abdelnaby EA. Follicular blood flow, antrum growth and angiogenic mediators in mares from ovulation to deviation. Anim Reprod. 2017;14:1043–56. https://doi.org/10.21451/1984-3143-AR848.
Article
Google Scholar
Bancroft JD, Stevens A. Theory and Practice of histological techniques. 7th ed. London: Churchill Livingstone; 2013. p. 120–31.
Google Scholar
Ishaya HB, Omaga I, Dibal NI, O. Attah MO. Comparative Histomorphology of the ovary and the oviduct in rabbits and pigeons. J Morphol Sci. 2018;35:242–6. https://doi.org/10.1055/s-0038-1675226.
Article
Google Scholar
Milanović V, Mrvić V, Nitovski A, Radović B, Milošević B. Angiography of A. ovarica in Californian rabbit (Oryctolagus cuniculus).” ISSN 1313–7735, Research People and Actual Tasks On Multidisciplinary Sciences, vol1.2015.
Cevik-Demirkan A, Ozdemir V, Demirkan I. The ovarian and uterine arteries in the chinchilla (chinchilla lanigera). J S Afr Vet Assoc. 2010;81:54–7. https://doi.org/10.4102/jsava.v81i1.97.
Article
CAS
PubMed
Google Scholar
Kigata T, Shibata H. Ramification pattern of the arteries supplying the rabbit female genital organs. Anat Rec. 2020;303:1478–88. https://doi.org/10.1002/ar.24244.
Article
Google Scholar
Adams DR. Canine anatomy, a systemic study. 4th ed: lowa state press; 2004.
Abdelnaby EA, Abo El-Maaty AM, Ragab RSA, Seida AA. Dynamics of uterine and ovarian arteries flow velocity waveforms and their relation to follicular and luteal growth and blood flow vascularization during the estrous cycle in Friesian cows. Theriogenology. 2018;121:112–21. https://doi.org/10.1016/j.theriogenology.2018.08.003.
Article
PubMed
Google Scholar
Sayed M, EL-Shahat K, Eissa H, EL-Maaty A. Ovarian and uterine haemodynamics during the estrous cycle of egyptian buffaloes in relation to steroid hormonal and nitric oxide levels. Bulg J Vet Med First Online. 2021. https://doi.org/10.15547/bjvm.2021-0048.
Farghali HA, AbdElKader NA, Fathi M, Emam IA, AbuBakr HO, Alijuaydi SH, et al. The efficiency of intrauterine infusion of platelet-rich plasma in the treatment of acute endometritis as assessed by endoscopic, Doppler, oxidative, immunohistochemical, and gene expression alterations in jennies. Theriogenology. 2022;181:147–60. https://doi.org/10.1016/j.theriogenology.2022.01.023 Epub 2022 Jan 24. PMID: 35101679.
Article
CAS
PubMed
Google Scholar
Rawy M, Derar D, El-Sherry T, Megahed G. Characterisation of follicular and luteal blood flow in female dromedary camel induced to ovulate using GnRH analogue. J Camel Pract Res. 2012;19:269–75.
Google Scholar
Zaidi J. Blood flow changes in the ovarian and uterine arteries in women with normal and polycystic ovaries. Hum Fertil (Camb). 2000;3:194–8. https://doi.org/10.1080/1464727002000198971.
Article
Google Scholar
Gill RW. Accuracy calculations for ultrasonic pulsed Doppler blood flow measurements; 1982.
Google Scholar
Campbell S, Bourne TH, Waterstone J, Reynolds KM, Crayford TJ, Jurkovic D, et al. Transvaginal color blood flow imaging of the periovulatory follicle. Fertil Steril. 1993;60:433–8 PMID: 8375522.
Article
CAS
Google Scholar
Collins W, Jurkovic D, Bourne T, Kurjak A, Campbell S. Ovarian morphology, endocrine function and intra-follicular blood flow during the peri-ovulatory period. Hum Reprod. 1991;6:319–24. https://doi.org/10.1093/oxfordjournals.humrep.a137332.
Article
CAS
PubMed
Google Scholar
Abdelnaby EA, Emam IA, Salem NY, Ramadan ES, Khattab MS, Farghali HA, et al. Uterine hemodynamic patterns, oxidative stress, and chromoendoscopy in mares with endometritis. Theriogenology. 2020;158:112–20. https://doi.org/10.1016/j.theriogenology.2020.09.012 Epub 2020 Sep 12. PMID: 32956860.
Article
CAS
PubMed
Google Scholar
EL-Sherbiny H, EL-Shahat K, EL-Maaty A, Abdelnaby EA. Ovarian and uterine haemodynamics and their relation to steroid hormonal levels in postpartum egyptian buffaloes. Bulg J Vet Med (online first). 2020. https://doi.org/10.15547/bjvm.2020-0091.
Rosenfeld CR. Responses of reproductive and nonreproductive tissues to 17 beta-estradiol during ovine puerperium. Am J Physiol Endocrinol Metab. 1980;239:333–9. https://doi.org/10.1152/ajpendo.1980.239.5.E333.
Article
Google Scholar
Piacsek BE, Huth JF. Changes in ovarian venous blood flow following cannulation; effects of luteinizing hormone (LH) and antihistamine. Proc Soc Exp Biol Med. 1971;138:1022–4. https://doi.org/10.3181/00379727-138-36042.
Article
CAS
PubMed
Google Scholar
Lee W, Novy MJ. Effects of luteinizing hormone and indomethacin on blood flow and steroidogenesis in the rabbit ovary. Biol Reprod. 1978;18:799–807. PMID: 667264. https://doi.org/10.1095/biolreprod18.5.799.
Article
CAS
PubMed
Google Scholar
Abouelela YS, Yasin NAE, El Karmoty AF, Khattab MA, El-Shahat KH, Abdelnaby EA. Ovarian, uterine and luteal hemodynamic variations between pregnant and non-pregnant pluriparous Egyptian buffalos with special reference to their anatomical and histological features. Theriogenology. 2021;173:173–82. https://doi.org/10.1016/j.theriogenology.2021.06.022 PMID 34392170.
Article
PubMed
Google Scholar
Ford SP, Christenson RK. Blood flow to uteri of sows during the estrous cycle and early pregnancy: local effect of the conceptus on the uterine blood supply. Biol Reprod. 1979;21:617–24. https://doi.org/10.1095/biolreprod21.3.617.
Article
CAS
PubMed
Google Scholar
Tan SL, Zaidi J, Campbell S, Doyle P, Collins W. Blood flow changes in the ovarian and uterine arteries during the normal menstrual cycle. Am J Obstet Gynecol. 1996;175:625–31. https://doi.org/10.1053/ob.1996.v175.a73865.
Article
CAS
PubMed
Google Scholar
Jovanovié A, Grbovié L, Tulić I. Predominant role for nitric oxide in the relaxation induced by acetylcholine in human uterine artery. Hum Reprod. 1994;9:387–93. https://doi.org/10.1093/oxfordjournals.humrep.a138514.
Article
Google Scholar
Jovanović A, Jovanović S, Tulić I, Grbović L. Predominant role for nitric oxide in the relaxation induced by vasoactive intestinal polypeptide in human uterine artery. Mol Hum Reprod. 1998;4:71–6. PMID: 9510014. https://doi.org/10.1093/molehr/4.1.71.
Article
PubMed
Google Scholar
Angus JA, Cocks TM. Endothelium-derived relaxing factor. Pharmacol Ther. 1989;41:303–52. https://doi.org/10.1016/0163-7258(89)90112-5.
Article
CAS
PubMed
Google Scholar
Mäkilä U, Jouppila P, Kirkinen P, Viinikka L, Ylikorkala O. Placental thromboxane and prostacyclin in the regulation of placental blood flow. Obstet Gynecol. 1986;68:537–40 PMID: 3528955.
PubMed
Google Scholar
Ford SP. Control of uterine and ovarian blood flow throughout the estrous cycle and pregnancy of ewes, sows and cows. J Anim Sci. 1982;55:32–42 PMID: 6765316.
Article
Google Scholar
Perrot-Applanat M, Deng M, Fernandez H, Lelaidier C, Meduri G, Bouchard P. Immunohistochemical localization of estradiol and progesterone receptors in human uterus throughout pregnancy: expression in endometrial blood vessels. J Clin Endocrinol Metab. 1994;78:216–24. https://doi.org/10.1210/jcem.78.1.8288707.
Article
CAS
PubMed
Google Scholar
Farhat MY, Lavigne MC, Ramwell PW. The vascular protective effects of estrogen. FASEB J. 1996;10:615–24 PMID: 8621060.
Article
CAS
Google Scholar
Hegele-Hartung C, Fritzemeier KH, Diel P. Effects of a pure antiestrogen and progesterone on estrogen-mediated alterations of blood flow and progesterone receptor expression in the aorta of ovariectomized rabbits. J Steroid Biochem Mol Biol. 1997;63:237–49. https://doi.org/10.1016/s0960-0760(97)00125-8 PMID: 9459190.
Article
CAS
PubMed
Google Scholar
Dharmarajan AM, Bruce NW, Meyer GT. Quantitative ultrastructural characteristics relating to transport between luteal cell cytoplasm and blood in the corpus luteum of the pregnant rat. Am J Anat. 1985;172:87–99. https://doi.org/10.1002/aja.1001720107.
Article
CAS
PubMed
Google Scholar
Abdelnaby EA. Higher doses of Melatonin affect ovarian and middle uterine arteries vascular blood flow and induce oestrus earlier in acyclic ewes. Reprod Dom Anim. 2020;55:763–9. https://doi.org/10.1111/rda.13678.
Rosiansky-Sultan M, Klipper E, Spanel-Borowski K, Meidan R. Inverse relationship between nitric oxide synthases and endothelin-1 synthesis in bovine corpus luteum: interactions at the level of luteal endothelial cell. Endocrinology. 2006;147:5228–35. https://doi.org/10.1210/en.2006-0795.
Article
CAS
PubMed
Google Scholar
Seekallu SV, Toosi BM, Rawlings NC. LH pulse frequency and the emergence and growth of ovarian antral follicular waves in the ewe during the luteal phase of the estrous cycle. Reprod Biol Endocrinol. 2009;7:78. https://doi.org/10.1186/1477-7827-7-78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Saffar FJ, Almayahi MS. Histomorphological and histochemical postnatal developmental study of the uteruses of the local rabbits (Oryctolagus cuniculus). Indian J Nat Sci. 2018b;9(50):14750–61.
Google Scholar
Patel B, Elguero S, Thakore S, Dahoud W, Bedaiwy M, Mesiano S. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum Reprod Update. 2015;21(2):155–73. https://doi.org/10.1093/humupd/dmu056.
Article
CAS
PubMed
Google Scholar
Vallejo G, La Greca AD, Tarifa-Reischle IC, Mestre-Citrinovitz AC, Ballare C, Beato M, et al. CDC2 mediates progestin initiated endometrial stromal cell proliferation: a PR signaling to gene expression independently of its binding to chromatin. Plos One. 2014;9:e97311. https://doi.org/10.1371/journal.pone.0097311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daghash SM, Yasin NAE, Abdelnaby EA, Emam I, Tolba A, Abouelela YS. Histological and hemodynamic characterization of corpus luteum throughout the luteal phase in pregnant and non-pregnant buffalos in relation to nitric oxide levels based on its anatomical determination. Front Vet Sci Sec Vet Imaging. https://doi.org/10.3389/fvets.2022.896581.
Das SK, Chakraborty I, Wang J, Dey SK, Hoffman LH. Expression of vascular endothelial growth factor (VEGF) and VEGF-receptor messenger ribonucleic acids in the peri-implantation rabbit uterus. Biol Reprod. 1997;56(6):1390–9. https://doi.org/10.1095/biolreprod56.6.1390.
Article
CAS
PubMed
Google Scholar
Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev. 2000;80:1–29. https://doi.org/10.1152/physrev.2000.80.1.1.
Article
CAS
PubMed
Google Scholar
Pathak D, Bansal N, Ghuman SPS. Immuno-localization of estrogen receptor (ER) and progesterone receptor (PR) in the buffalo ovary in relation to their plasma hormonal levels. Indian J Anim Sci. 2021;91:723–8. https://doi.org/10.30954/2277-940X.01.2019.26.
Article
CAS
Google Scholar
Rosenfeld CS, Wagner JS, Roberts RM, Lubahn DB. Intraovarian actions of oestrogen. Reproduction. 2001;122:215–26. https://doi.org/10.1530/rep.0.1220215.
Article
CAS
PubMed
Google Scholar
Müller K, Ellenberger C, Schoon HA. Histomorphological and immunohistochemical study of angiogenesis and angiogenic factors in the ovary of the mare. Res Vet Sci. 2009;87:421–31. https://doi.org/10.1016/j.rvsc.2009.04.011.
Article
CAS
PubMed
Google Scholar
Qiao J, Feng HL. Extra- and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update. 2011;17:17–33. https://doi.org/10.1093/humupd/dmq032.
Article
PubMed
Google Scholar
Watson ED, Al-Zi'abi MO. Characterization of morphology and angiogenesis in follicles of mares during spring transition and the breeding season. Reproduction. 2002;124:227–34 PMID: 12141935.
Article
CAS
Google Scholar
Wulff C, Dickson SE, Duncan WC, Fraser HM. Angiogenesis in the human corpus luteum: simulated early pregnancy by HCG treatment is associated with both angiogenesis and vessel stabilization. Hum Reprod. 2001;16:2515–24. https://doi.org/10.1093/humrep/16.12.2515.
Article
CAS
PubMed
Google Scholar
Berisha B, Schams D, Kosmann M, Amselgruber W, Einspanier R. Expression and localisation of vascular endothelial growth factor and basic fibroblast growth factor during the final growth of bovine ovarian follicles. J Endocrinol. 2000;167:371–82. https://doi.org/10.1677/joe.0.1670371.
Article
CAS
PubMed
Google Scholar
Schams D, Kosmann M, Berisha B, Amselgruber WM, Miyamoto A. Stimulatory and synergistic effects of luteinising hormone and insulin like growth factor 1 on the secretion of vascular endothelial growth factor and progesterone of cultured bovine granulosa cells. Exp Clin Endocrinol Diabetes. 2001;109:155–62. https://doi.org/10.1055/s-2001-14839.
Article
CAS
PubMed
Google Scholar
Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25:581–611. https://doi.org/10.1210/er.2003-0027.
Article
CAS
PubMed
Google Scholar
Tamanini C, De Ambrogi M. Angiogenesis in developing follicle and corpus luteum. Reprod Domest Anim. 2004;39:206–16. https://doi.org/10.1111/j.1439-0531.2004.00505.x.
Article
CAS
PubMed
Google Scholar
Robinson R, Mann G, Lamming G, Wathes D. Expression of oxytocin, oestrogen and progesterone receptors in uterine biopsy samples throughout the oestrous cycle and early pregnancy in cows. Reproduction. 2001;122:965–79. https://doi.org/10.1530/rep.0.1220965.
Article
CAS
PubMed
Google Scholar
Duan H, Xiao L, Hu J, et al. Expression of oestrogen receptor, androgen receptor and progesterone nuclear receptor in sheep uterus during the oestrous cycle. Reprod Domest Anim. 2019;54(10):1305–12. https://doi.org/10.1111/rda.13489.
Article
CAS
PubMed
Google Scholar
Hapangama DK, Kamal AM, Bulmer JN. Estrogen receptor β: the guardian of the endometrium. Hum Reprod Update. 2015;21(2):174–93. https://doi.org/10.1093/humupd/dmu053.
Article
CAS
PubMed
Google Scholar
Abd-Elkareem M, Abou-Elhamd AS. Immunohistochemical localization of progesterone receptors alpha (PRA) in ovary of the pseudopregnant rabbit. Anim Reprod. 2019;16(2):302–10. https://doi.org/10.21451/1984-3143-AR2018-0128.
Article
PubMed
PubMed Central
Google Scholar
Boos A, Meyer W, Schwarz R, Grunert E. Immunohistochemical assessment of oestrogen receptor and progesterone receptor distribution in biopsy samples of the bovine endometrium collected throughout the oestrous cycle. Anim Reprod Sci. 1996;44:11–21. https://doi.org/10.1016/0378-4320(96)01492-3.
Article
CAS
Google Scholar
Spencer TE, Bazer FW. Temporal and spatial alterations in uterine estrogen receptor and progesterone receptor expression during estrous cycle and early pregnancy in the ewe. Biol Reprod. 1995;53:1527–43. https://doi.org/10.1095/biolreprod53.6.1527.
Article
CAS
PubMed
Google Scholar
Mertens HJ, Heineman MJ, Theunissen PH, de Jong FH, Evers JL. Androgen, estrogen and progesterone receptor expression in the human uterus during the menstrual cycle. Eur J Obstet Gynecol Reprod Biol. 2001;98:58–65. https://doi.org/10.1016/s0301-2115(00)00554-6.
Article
CAS
PubMed
Google Scholar
Ing NH, Tornesi MB. Estradiol up-regulates estrogen receptor and progesterone receptor gene expression in specific ovine uterine cells. Biol Reprod. 1997;56:1205–15. https://doi.org/10.1095/biolreprod56.5.1205.
Article
CAS
PubMed
Google Scholar
Winuthayanon W, Hewitt SC, Orvis GD, Behringer RR, Korach KS. Uterine epithelial estrogen receptor α is dispensable for proliferation but essential for complete biological and biochemical responses. Proc Natl Acad Sci U S A. 2010;107:19272–7. https://doi.org/10.1073/pnas.1013226107.
Article
PubMed
PubMed Central
Google Scholar
Möller B, Rasmussen C, Lindblom B, Olovsson M. Expression of the angiogenic growth factors VEGF, FGF-2, EGF and their receptors in normal human endometrium during the menstrual cycle. Mol Hum Reprod. 2001;7:65–72. https://doi.org/10.1093/molehr/7.1.65.
Article
PubMed
Google Scholar
Winther H, Dantzer V. Co-localization of vascular endothelial growth factor and its two receptors flt-1 and kdr in the mink placenta. Placenta. 2001;22:457–65. https://doi.org/10.1053/plac.2001.0655.
Article
CAS
PubMed
Google Scholar
Alan T, Hemo I, Itin A, Peer J, Stone J, Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med. 1995;1:1024–8. https://doi.org/10.1038/nm1095-1024.
Article
Google Scholar
Cullinan-Bove K, Koos RD. Vascular endothelial growth factor/vascular permeability factor expression in the rat uterus: rapid stimulation by estrogen correlates with estrogen-induced increases in uterine capillary permeability and growth. Endocrinology. 1993;133:829–37. https://doi.org/10.1210/endo.133.2.8344219.
Article
CAS
PubMed
Google Scholar
Grazul-Bilska AT, Navanukraw C, Johnson ML, Arnold DA, Reynolds LP, Redmer DA. Expression of endothelial nitric oxide synthase in the ovine ovary throughout the estrous cycle. Reproduction. 2006;132(4):579–87. https://doi.org/10.1530/REP-06-0009 PMID: 17008469.
Article
CAS
PubMed
Google Scholar