Abdelwhab EM, Hafez HM. An overview of the epidemic of highly pathogenic H5N1 avian influenza virus in Egypt: epidemiology and control challenges. Epidemiol Infect. 2011;139(5):647–57. https://doi.org/10.1017/s0950268810003122.
Article
CAS
PubMed
Google Scholar
Gomaa MR, El Rifay AS, Abu Zeid D, Elabd MA, Elabd E, Kandeil A, et al. Incidence and Seroprevalence of avian influenza in a cohort of backyard poultry growers, Egypt, August 2015-March 2019. Emerg Infect Dis. 2020;26(9):2129–36. https://doi.org/10.3201/eid2609.200266.
Article
PubMed
PubMed Central
Google Scholar
Saad MD, Ahmed LS, Gamal-Eldein MA, Fouda MK, Khalil F, Yingst SL, et al. Possible avian influenza (H5N1) from migratory bird, Egypt. Emerg Infect Dis. 2007;13(7):1120–1. https://doi.org/10.3201/eid1307.061222.
Article
PubMed
PubMed Central
Google Scholar
El-Shesheny R, Kandeil A, Mostafa A, Ali MA, Webby RJ. H5 Influenza Viruses in Egypt. Cold Spring Harbor Perspect Med. 2020:a038745. https://doi.org/10.1101/cshperspect.a038745.
Peyre M, Samaha H, Makonnen YJ, Saad A, Abd-Elnabi A, Galal S, et al. Avian influenza vaccination in Egypt: limitations of the current strategy. J Mol Genetic Med. 2009;3(2):198. https://doi.org/10.4172/1747-0862.1000035.
Article
Google Scholar
Albrechtsen L, Saade M, Riviere A, Rushton J. Pro-active engagement in compensation and rehabilitation policy formulation and implementation: the case of HPAI in Egypt. Worlds Poult Sci J. 2009;65(2):225–30. https://doi.org/10.1017/S0043933909000178.
Article
Google Scholar
Abdelwhab E, Arafa A, Selim A, Shereen G, Kilany W, Samaha H, et al. Highly pathogenic avian influenza in H5N1 in Egypt: current situation and challenges. In: Proceedings of the 5th International Meeting of the Working Group: 2009; 2009. p. 308–16.
Google Scholar
Hafez MH, Arafa A, Abdelwhab EM, Selim A, Khoulosy SG, Hassan MK, et al. Avian influenza H5N1 virus infections in vaccinated commercial and backyard poultry in Egypt. Poult Sci. 2010;89(8):1609–13. https://doi.org/10.3382/ps.2010-00708.
Article
CAS
PubMed
Google Scholar
Aly MM, Arafa A, Hassan MK. Epidemiological findings of outbreaks of disease caused by highly pathogenic H5N1 avian influenza virus in poultry in Egypt during 2006. Avian Dis. 2008;52(2):269–77. https://doi.org/10.1637/8166-103007-reg.1.
Article
CAS
PubMed
Google Scholar
Kayali G, Webby RJ, Ducatez MF, El Shesheny RA, Kandeil AM, Govorkova EA, et al. The epidemiological and molecular aspects of influenza H5N1 viruses at the human-animal interface in Egypt. PLoS One. 2011;6(3):e17730. https://doi.org/10.1371/journal.pone.0017730.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eladl AEH, El-Azm KIA, Ismail AEN, Ali A, Saif YM, Lee C-W. Genetic characterization of highly pathogenic H5N1 avian influenza viruses isolated from poultry farms in Egypt. Virus Genes. 2011;43(2):272–80. https://doi.org/10.1007/s11262-011-0633-5.
Article
CAS
PubMed
Google Scholar
Arafa A, Suarez D, Hassan M, Aly M. Phylogenetic analysis of hemagglutinin and neuraminidase genes of highly pathogenic avian influenza H5N1 Egyptian strains isolated from 2006 to 2008 indicates heterogeneity with multiple distinct sublineages. Avian Dis. 2010;54(s1):345–9. https://doi.org/10.1637/8927-051509-resnote.1.
Article
CAS
PubMed
Google Scholar
Cattoli G, Fusaro A, Monne I, Coven F, Joannis T, El-Hamid HSA, et al. Evidence for differing evolutionary dynamics of a/H5N1 viruses among countries applying or not applying avian influenza vaccination in poultry. Vaccine. 2011;29(50):9368–75. https://doi.org/10.1016/j.vaccine.2011.09.127.
Article
PubMed
Google Scholar
El Masry I, Rijks J, Peyre M, Taylor N, Lubroth J, Jobre Y. Modelling influenza a H5N1 vaccination strategy scenarios in the household poultry sector in Egypt. Trop Anim Health Prod. 2014;46(1):57–63. https://doi.org/10.1007/s11250-013-0446-8.
Article
PubMed
Google Scholar
Swayne D, Pavade G, Hamilton K, Vallat B, Miyagishima K. Assessment of national strategies for control of high-pathogenicity avian influenza and low-pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination. Rev Sci Tech. 2011;30(3):839. https://doi.org/10.20506/rst.30.3.2081.
Article
CAS
PubMed
Google Scholar
Abdelwhab E, Hassan M, Abdel-Moneim A, Naguib M, Mostafa A, Hussein I, et al. Introduction and enzootic of a/H5N1 in Egypt: virus evolution, pathogenicity and vaccine efficacy ten years on. Infect Genet Evol. 2016;40:80–90. https://doi.org/10.1016/j.meegid.2016.02.023.
Article
CAS
PubMed
Google Scholar
Kayali G, Kandeil A, El-Shesheny R, Kayed AS, Maatouq AM, Cai Z, et al. Avian influenza a(H5N1) virus in Egypt. Emerg Infect Dis. 2016;22(3):379–88. https://doi.org/10.3201/eid2203.150593.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samy AA, El-Enbaawy MI, El-Sanousi AA, Nasef SA, Naguib MM, Abdelwhab EM, et al. Different counteracting host immune responses to clade 2.2.1.1 and 2.2.1.2 Egyptian H5N1 highly pathogenic avian influenza viruses in naïve and vaccinated chickens. Vet Microbiol. 2016;183:103–9. https://doi.org/10.1016/j.vetmic.2015.12.005.
Article
CAS
PubMed
Google Scholar
Naguib MM, Verhagen JH, Samy A, Eriksson P, Fife M, Lundkvist Å, et al. Avian influenza viruses at the wild-domestic bird interface in Egypt. Infect Ecol Epidemiol. 2019;9(1):1575687. https://doi.org/10.1080/20008686.2019.1575687.
Article
PubMed
PubMed Central
Google Scholar
Arafa A, Naguib M, Luttermann C, Selim A, Kilany W, Hagag N, et al. Emergence of a novel cluster of influenza A (H5N1) virus clade 2.2. 1.2 with putative human health impact in Egypt, 2014/15. Eurosurveillance. 2015;20(13):21085. https://doi.org/10.2807/1560-7917.es2015.20.13.21085.
Article
PubMed
Google Scholar
Monne I, Hussein HA, Fusaro A, Valastro V, Hamoud MM, Khalefa RA, et al. H9N2 influenza a virus circulates in H5N1 endemically infected poultry population in Egypt. Influenza Other Respir Viruses. 2013;7(3):240–3. https://doi.org/10.1111/j.1750-2659.2012.00399.x.
Article
CAS
PubMed
Google Scholar
Naguib MM, Arafa AS, El-Kady MF, Selim AA, Gunalan V, Maurer-Stroh S, et al. Evolutionary trajectories and diagnostic challenges of potentially zoonotic avian influenza viruses H5N1 and H9N2 co-circulating in Egypt. Infect Genet Evol. 2015;34:278–91. https://doi.org/10.1016/j.meegid.2015.06.004.
Article
PubMed
Google Scholar
World Organization for Animal Health (OIE): Update on avian influenza in animals 2017. 2017. https://www.oie.int/en/animal-health-in-the-world/update-on-avian-influenza/2017.
Google Scholar
Kandeil A, Hicks JT, Young SG, El Taweel AN, Kayed AS, Moatasim Y, et al. Active surveillance and genetic evolution of avian influenza viruses in Egypt, 2016-2018. Emerg Microbes Infect. 2019;8(1):1370–82. https://doi.org/10.1080/22221751.2019.1663712.
Article
PubMed
PubMed Central
Google Scholar
Cattoli G, Milani A, Temperton N, Zecchin B, Buratin A, Molesti E, et al. Antigenic drift in H5N1 avian influenza virus in poultry is driven by mutations in major antigenic sites of the hemagglutinin molecule analogous to those for human influenza virus. J Virol. 2011;85(17):8718–24. https://doi.org/10.1128/jvi.02403-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kandeil A, El-Shesheny R, Maatouq A, Moatasim Y, Cai Z, McKenzie P, et al. Novel reassortant H9N2 viruses in pigeons and evidence for antigenic diversity of H9N2 viruses isolated from quails in Egypt. J Gen Virol. 2017;98(4):548–62. https://doi.org/10.1099/jgv.0.000657.
Article
CAS
PubMed
PubMed Central
Google Scholar
Si Y, de Boer WF, Gong P. Different environmental drivers of highly pathogenic avian influenza H5N1 outbreaks in poultry and wild birds. PLoS One. 2013;8(1):e53362. https://doi.org/10.1371/journal.pone.0053362.
Article
CAS
PubMed
PubMed Central
Google Scholar
BirdLife I: Migratory soaring birds project. 2018. Available from: http://migratorysoaringbirds.undp.birdlife.org/en.
Google Scholar
BirdLife I: Egypt (BirdLife international). 2018. Available from: http://datazone.birdlife.org/country/egypt/ibas.
Google Scholar
ConventionR: Egypt (Ramsar Convention). 2018. Available from: https://www.ramsar.org/wetland/egypt.
Google Scholar
Krauss S, Walker D, Pryor SP, Niles L, Chenghong L, Hinshaw VS, et al. Influenza a viruses of migrating wild aquatic birds in North America. Vector Borne Zoonotic Dis. 2004;4(3):177–89. https://doi.org/10.1089/vbz.2004.4.177.
Article
PubMed
Google Scholar
Wallensten A, Munster VJ, Latorre-Margalef N, Brytting M, Elmberg J, Fouchier RA, et al. Surveillance of influenza a virus in migratory waterfowl in northern Europe. Emerg Infect Dis. 2007;13(3):404–11. https://doi.org/10.3201/eid1303.061130.
Article
PubMed
PubMed Central
Google Scholar
Emergency Prevention System Global Animal Disease Information System (EMPRES i): Food and Agriculture Organization of the United Nations. 2019.
Google Scholar
Mosad SM, El-Gohary FA, Ali HS, El-Sharkawy H, Elmahallawy EK. Pathological and molecular characterization of H5 avian influenza virus in poultry flocks from Egypt over a ten-year period (2009–2019). Animals. 2020;10(6):1010. https://doi.org/10.3390/ani10061010.
Article
PubMed Central
Google Scholar
Tian H, Cui Y, Dong L, Zhou S, Li X, Huang S, et al. Spatial, temporal and genetic dynamics of highly pathogenic avian influenza a (H5N1) virus in China. BMC Infect Dis. 2015;15:54. https://doi.org/10.1186/s12879-015-0770-x.
Article
PubMed
PubMed Central
Google Scholar
Xu B, Gong P. Spatial temporal modeling of endemic diseases: Schistosomiasis transmission and control as an example, Manual of geographic information systems ASPRS Pubns; 2009. p. 413–26. https://www.researchgate.net/profile/Bing-Xu-38/publication/265224849_Spatial_Temporal_Modeling_of_Endemic_Diseases_Schistosomiasis_Transmission_and_Control_as_an_Example/links/549d0fc80cf2fedbc30fe9df/Spatial-Temporal-Modeling-of-Endemic-Diseases-Schistosomiasis-Transmission-and-Control-as-an-Example.pdf
Google Scholar
Kim JK, Kayali G, Walker D, Forrest HL, Ellebedy AH, Griffin YS, et al. Puzzling inefficiency of H5N1 influenza vaccines in Egyptian poultry. Proc Natl Acad Sci U S A. 2010;107(24):11044–9. https://doi.org/10.1073/pnas.1006419107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bing X, Peng G, Seto E. A spatialtemporal model for assessing the effects of inter-village connectivity in schistosomiasis transmission. Ann AAG. 2006;96(1):31–46. https://doi.org/10.1111/j.1467-8306.2006.00497.x.
Article
Google Scholar
Food and Agriculture Organization (FAO): EMPRES-i-Global Animal Disease Information System. 2017. http://empres-i.fao.org/eipws3g/#h=0.
Google Scholar
Zhang Z, Chen D, Chen Y, Liu W, Wang L, Zhao F, et al. Spatio-temporal data comparisons for global highly pathogenic avian influenza (HPAI) H5N1 outbreaks. PLoS One. 2010;5(12):e15314. https://doi.org/10.1371/journal.pone.0015314.
Article
CAS
PubMed
PubMed Central
Google Scholar
Worton BJ. Kernel methods for estimating the utilization distribution in home-range studies. Ecology. 1989;70(1):164–8. https://doi.org/10.2307/1938423.
Article
Google Scholar
O’Brien SH, Webb A, Brewer MJ, Reid JB. Use of kernel density estimation and maximum curvature to set marine protected area boundaries: identifying a special protection area for wintering red-throated divers in the UK. Biol Conserv. 2012;156:15–21. https://doi.org/10.1016/j.biocon.2011.12.033.
Article
Google Scholar
Silverman BW. Density estimation for statistics and data analysis. 1st ed: Routledge; 1998. https://doi.org/10.1201/9781315140919.
Book
Google Scholar
Bailey TC, Gatrell AC: Interactive spatial data analysis, vol. 413: Longman Scientific & Technical Essex; 1995. http://www.personal.psu.edu/faculty/f/k/fkw/rsoc597/UgandaMaps.pdf.
Google Scholar
Matsumoto PSS, Hiramoto RM, Pereira VBR, Camprigher VM, Taniguchi HH, de Raeffray Barbosa JE, et al. Impact of the dog population and household environment for the maintenance of natural foci of Leishmania infantum transmission to human and animal hosts in endemic areas for visceral leishmaniasis in Sao Paulo state, Brazil. PLoS One. 2021;16(8):e0256534. https://doi.org/10.1371/journal.pone.0256534.
Article
CAS
PubMed
PubMed Central
Google Scholar
Environmental Systems Research Institute (ESRI): ArcGIS Desktop Help 10.2 Geostatistical Analyst. 2014. https://resources.arcgis.com/en/help/main/10.2/index.html#//009z00000011000000.
Google Scholar
Kulldorff M, Heffernan R, Hartman J, Assunçao R, Mostashari F. A space–time permutation scan statistic for disease outbreak detection. PLoS Med. 2005;2(3):e59. https://doi.org/10.1371/journal.pmed.0020059.
Article
PubMed
PubMed Central
Google Scholar
Kulldorff M: Information Management Services, Inc.(2009) SaTScanTM v8. 0: Software for the spatial and space-time scan statistics. 2010. http://www.satscan.org.
Google Scholar
Onozuka D, Hagihara A. Spatial and temporal dynamics of influenza outbreaks. Epidemiology. 2008;19(6):824–8. https://doi.org/10.1097/ede.0b013e3181880eda.
Article
PubMed
Google Scholar
Zhang Z, Chen D, Chen Y, Davies TM, Vaillancourt J-P, Liu W. Risk signals of an influenza pandemic caused by highly pathogenic avian influenza subtype H5N1: spatio-temporal perspectives. Vet J. 2012;192(3):417–21. https://doi.org/10.1016/j.tvjl.2011.08.012.
Article
PubMed
Google Scholar
Minh PQ, Morris RS, Schauer B, Stevenson M, Benschop J, Nam HV, et al. Spatio-temporal epidemiology of highly pathogenic avian influenza outbreaks in the two deltas of Vietnam during 2003-2007. Prev Vet Med. 2009;89(1–2):16–24. https://doi.org/10.1016/j.prevetmed.2009.01.004.
Article
PubMed
Google Scholar
Dhingra MS, Dissanayake R, Negi AB, Oberoi M, Castellan D, Thrusfield M, et al. Spatio-temporal epidemiology of highly pathogenic avian influenza (subtype H5N1) in poultry in eastern India. Spat Spatiotemporal Epidemiol. 2014;11:45–57. https://doi.org/10.1016/j.sste.2014.06.003.
Article
PubMed
Google Scholar
Si Y, Skidmore AK, Wang T, de Boer WF, Debba P, Toxopeus AG, et al. Spatio-temporal dynamics of global H5N1 outbreaks match bird migration patterns. Geospat Health. 2009;4(1):65–78. https://doi.org/10.4081/gh.2009.211.
Article
PubMed
Google Scholar
Park AW, Glass K. Dynamic patterns of avian and human influenza in east and Southeast Asia. Lancet Infect Dis. 2007;7(8):543–8. https://doi.org/10.1016/s1473-3099(07)70186-x.
Article
PubMed
Google Scholar
Shortridge KF, Zhou NN, Guan Y, Gao P, Ito T, Kawaoka Y, et al. Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology. 1998;252(2):331–42. https://doi.org/10.1006/viro.1998.9488.
Article
CAS
PubMed
Google Scholar
ElMasry I, Elshiekh H, Abdlenabi A, Saad A, Arafa A, Fasina FO, et al. Avian influenza H5N1 surveillance and its dynamics in poultry in live bird markets, Egypt. Transbound Emerg Dis. 2017;64(3):805–14. https://doi.org/10.1111/tbed.12440.
Article
CAS
PubMed
Google Scholar
El-Zoghby EF, Aly MM, Nasef SA, Hassan MK, Arafa A-S, Selim AA, et al. Surveillance on a/H5N1 virus in domestic poultry and wild birds in Egypt. Virol J. 2013;10(1):203. https://doi.org/10.1186/1743-422x-10-203.
Article
PubMed
PubMed Central
Google Scholar
Salaheldin AH, Kasbohm E, El-Naggar H, Ulrich R, Scheibner D, Gischke M, et al. potential biological and climatic factors that influence the incidence and persistence of highly pathogenic H5N1 avian influenza virus in Egypt. Front Microbiol. 2018;9:528. https://doi.org/10.3389/fmicb.2018.00528.
Article
PubMed
PubMed Central
Google Scholar
Elsobky Y, El Afandi G, Abdalla E, Byomi A, Reddy G. Possible ramifications of climate variability on HPAI-H5N1 outbreak occurrence: case study from the Menoufia, Egypt. PLoS One. 2020;15(10):e0240442. https://doi.org/10.1371/journal.pone.0240442.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arafa A, El-Masry I, Kholosy S, Hassan MK, Dauphin G, Lubroth J, et al. Phylodynamics of avian influenza clade 2.2. 1 H5N1 viruses in Egypt. Virol J. 2016;13(1):49. https://doi.org/10.1186/s12985-016-0477-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert M, Pfeiffer DU. Risk factor modelling of the spatio-temporal patterns of highly pathogenic avian influenza (HPAIV) H5N1: a review. Spat Spatiotemporal Epidemiol. 2012;3(3):173–83. https://doi.org/10.1016/j.sste.2012.01.002.
Article
PubMed
PubMed Central
Google Scholar
Ward MP, Maftei D, Apostu C, Suru A. Environmental and anthropogenic risk factors for highly pathogenic avian influenza subtype H5N1 outbreaks in Romania, 2005--2006. Vet Res Commun. 2008;32(8):627–34. https://doi.org/10.1007/s11259-008-9064-8.
Article
PubMed
Google Scholar
Stallknecht DE, Shane SM, Kearney MT, Zwank PJ. Persistence of avian influenza viruses in water. Avian Dis. 1990;34(2):406–11. https://doi.org/10.2307/1591428.
Article
CAS
PubMed
Google Scholar
Scotch M, Mei C, Makonnen YJ, Pinto J, Ali A, Vegso S, et al. Phylogeography of influenza a H5N1 clade 2.2.1.1 in Egypt. BMC Genomics. 2013;14:871. https://doi.org/10.1186/1471-2164-14-871.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mu JH, McCarl BA, Wu X, Gan L. Climate Change Influences on the Risk of Avian Influenza Outbreaks and Associated Economic Loss. In: No 103637, 2011 Annual Meeting, July 24–26, 2011. Pittsburgh: Pennsylvania from Agricultural and Applied Economics Association; 2011.
Google Scholar
Paul M, Tavornpanich S, Abrial D, Gasqui P, Charras-Garrido M, Thanapongtharm W, et al. Anthropogenic factors and the risk of highly pathogenic avian influenza H5N1: prospects from a spatial-based model. Vet Res. 2010;41(3):28. https://doi.org/10.1051/vetres/2009076.
Article
PubMed
Google Scholar
Cao C, Xu M, Chang C, Xue Y, Zhong S, Fang L, et al. Risk analysis for the highly pathogenic avian influenza in mainland China using meta-modeling. Chin Sci Bull. 2010;55(36):4168–78. https://doi.org/10.1007/s11434-010-4225-x.
Article
PubMed
PubMed Central
Google Scholar
Fang LQ, de Vlas SJ, Liang S, Looman CW, Gong P, Xu B, et al. Environmental factors contributing to the spread of H5N1 avian influenza in mainland China. PLoS One. 2008;3(5):e2268. https://doi.org/10.1371/journal.pone.0002268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tiensin T, Ahmed SS, Rojanasthien S, Songserm T, Ratanakorn P, Chaichoun K, et al. Ecologic risk factor investigation of clusters of avian influenza a (H5N1) virus infection in Thailand. J Infect Dis. 2009;199(12):1735–43. https://doi.org/10.1086/599207.
Article
PubMed
Google Scholar
World Health Organization (WHO). Food and Agriculture Organization of the United Nations (FAO).(2004): Fruit and vegetables for health: Report of a Joint FAO. In: WHO Workshop: 2014; 2004. p. 1–3. http://web.oie.int/eng/AVIAN_INFLUENZA/FAO%20recommendations%20on%20HPAI.pdf.
Google Scholar
Young SG, Carrel M, Kitchen A, Malanson GP, Tamerius J, Ali M, et al. How's the flu getting through? Landscape genetics suggests both humans and birds spread H5N1 in Egypt. Infect Genet Evol. 2017;49:293–9. https://doi.org/10.1016/j.meegid.2017.02.005.
Article
PubMed
Google Scholar
Elhalawani S: Hunting and illegal killing of birds along the mediterranean coast of Egypt (nature conservation Egypt and birdlife international). 2016. https://www.birdlife.org/sites/default/files/attachments/hunting_and_illegal_killing_in_egypt_0.pdf.
Google Scholar
Kandeil A, Kayed A, Moatasim Y, Webby RJ, McKenzie PP, Kayali G, et al. Genetic characterization of highly pathogenic avian influenza a H5N8 viruses isolated from wild birds in Egypt. J Gen Virol. 2017;98(7):1573–86. https://doi.org/10.1099/jgv.0.000847.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ward MP, Maftei D, Apostu C, Suru A. Geostatistical visualisation and spatial statistics for evaluation of the dispersion of epidemic highly pathogenic avian influenza subtype H5N1. Vet Res. 2008;39(3):22. https://doi.org/10.1051/vetres:2007063.
Article
PubMed
Google Scholar