Plain KM, Marsh IB, Waldron AM, Galea F, Whittington AM, Saunders VF, et al. High-throughput direct fecal PCR assay for detection of Mycobacterium avium subsp. paratuberculosis in sheep and cattle. J Clin Microbiol. 2014;52:745–57.
Article
CAS
Google Scholar
Koets A, Ravesloot L, Ruuls R, Dinkla A, Eisenberg S, Lievaart-Peterson K. Effects of age and environment on adaptive immune responses to Mycobacterium avium subsp. paratuberculosis (MAP) vaccination in dairy goats in relation to paratuberculosis control strategies. Vet Sci. 2019;6(3):62. https://doi.org/10.3390/vetsci6030062.
Article
PubMed Central
Google Scholar
Grossi DL, Santori D, Barone A, Abbruzzese S, Ricchi M, Marcario AG. Isolation of Mycobacterium avium subsp. Paratuberculosis in the Feces and Tissue of Small Ruminants Using a Non-Automated Liquid Culture Method. Animals (Basel). 2020;10(1):20. https://doi.org/10.3390/ani10010020.
Article
Google Scholar
Rawat KD, Chaudhary S, Kumar N, Gupta S, Chaubey KK, Singh SV, et al. Economic losses in a commercial dairy farm due to the out-break of Johne’s disease in India. Res J Vet Pract. 2014;2(5):73–7.
Article
Google Scholar
Mathevon Y, Foucras G, Falguières R, Corbiere F. Estimation of the sensitivity and specificity of two serum ELISAs and one fecal qPCR for diagnosis of paratuberculosis in sub-clinically infected young adult French sheep using latent class Bayesian modeling. BMC Vet Res. 2017;13:230.
Article
Google Scholar
Barrero-Domínguez B, Luque I, Huerta B, Gomez-Laguna J, Galán-Relaño Á, Gómez-Gascón L, et al. Paratuberculosis in dairy goat flocks from southern Spain: risk factors associated with seroprevalence. Vet Rec. 2019;185(19).
Arsenault J, Singh Sohal J, Leboeuf A, Hélie P, Fecteau G, Robinson Y. L’Homme Y. validation of an in-house real-time PCR fecal assay and comparison with two commercial assays for the antemortem detection of Mycobacterium avium subsp. paratuberculosis infection in culled sheep. J Vet Diagn Investig. 2019;31(1):58–68.
Article
CAS
Google Scholar
Kuenstner L, Kuenstner JT. Mycobacterium avium ssp. paratuberculosis in the food supply: a public health issue. Front. Public Health. 2021;15(9):647448. https://doi.org/10.3389/fpubh.2021.647448.
Article
Google Scholar
Chaubey KK, Singh SV, Gupta S, Singh M, Sohal JS, Kumar N, et al. Mycobacterium avium subsp. paratuberculosis - an important food borne pathogen of high public health significance with special reference to India: an update. Vet Quart. 2017;37(1):282–99. https://doi.org/10.1080/01652176.2017.1397301.
Article
Google Scholar
Lowe AM, Yansouni CP, Behr MA. Causality and gastrointestinal infections: Koch, hill, and Crohn's. Lancet Infect Dis. 2008;8(11):720–6.
Article
Google Scholar
McNees AL, Markesich D, Zayyani NR, Graham DY. Mycobacterium paratuberculosis as a cause of Crohn's disease. Expert Rev Gastroenterol Hepatol. 2015;9(12):1523–34.
Article
Google Scholar
Singh S.V, Kuenstner JT, Davis WC, Agarwal P, Kumar N, Singh D, Gupta S, Chaubey KK, Tyagi AK, Misri J, Jayaraman S, Sohal JS and Dhama K. Concurrent resolution of chronic diarrhea likely due to Crohn's disease and infection with Mycobacterium avium paratuberculosis. Front Med 2016;3:49.
Bo M, Erre GL, Bach H, Slavin YN, Manchia PA, Passiu G, et al. PtpA and PknG Proteins Secreted by Mycobacterium avium subsp. paratuberculosis are Recognized by Sera from Patients with Rheumatoid Arthritis: A Case–Control Study. J Inflam Res. 2019;12:301.
Article
CAS
Google Scholar
Zarei-Kordshouli F, Geramizadeh B, Khodakaram-Tafti A. Prevalence of Mycobacterium avium subspecies paratuberculosis IS 900 DNA in biopsy tissues from patients with Crohn's disease: histopathological and molecular comparison with Johne's disease in Fars province of Iran. BMC Infect Dis. 2019;19(1):23.
Article
Google Scholar
Dzieciol M, Volgger P, Khol J, Baumgartner W, Wagner M, Hein I. A novel real-time PCR assay for specific detection and quantification of Mycobacterium avium subsp. paratuberculosis in milk with the inherent possibility of differentiation between viable and dead cells. BMC Res Notes. 2010;3(1):1–8.
Article
Google Scholar
Hemati Z, Haghkhah M, Derakhshandeh A, Singh S, Chaubey KK. Cloning and characterization of MAP2191 gene, a mammalian cell entry antigen of Mycobacterium avium subspecies paratuberculosis. Mol Bio Res Commun. 2018;7(4):165.
CAS
Google Scholar
Machado D, Lecorche E, Mougari F, Cambau E, Viveiros M. Insights on mycobacterium leprae efflux pumps and their implications in drug resistance and virulence. Front Microbiol. 2018;13(9):3072.
Article
Google Scholar
O’Brien DP, Robson M, Friedman ND, Walton A, McDonald A, Callan P, et al. Incidence, clinical spectrum, diagnostic features, treatment and predictors of paradoxical reactions during antibiotic treatment of mycobacterium ulcerans infections. BMC Infect Dis. 2013;13:416.
Article
Google Scholar
Singh SV, Singh AV, Singh R, Sandhu KS, Singh PK, Sohal JS, et al. Evaluation of highly sensitive indigenous milk ELISA kit with fecal culture, milk culture and fecal-PCR for the diagnosis of bovine Johne’s disease (BJD) in India. Comp Immunol Microbiol Infect Dis. 2007a;30:175.
Article
CAS
Google Scholar
Schwalm AK, Obiegala A, Pfeffer M, Sting R. Enhanced sensitivity and fast turnaround time in laboratory diagnosis for bovine paratuberculosis in fecal samples. J Microbiol Methods. 2018;152:39–47.
Article
CAS
Google Scholar
Prendergast BJ, Onishi KG, Zucker I. Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci Biobehav Rev. 2014;40:1–5. https://doi.org/10.1016/j.neubiorev.2014.01.001.
Article
PubMed
Google Scholar
Keller SM, Stephan R, Kuenzler R, Meylan M, Wittenbrink MM. Comparison of fecal culture and F57 real-time polymerase chain reaction for the detection of Mycobacterium avium subspecies paratuberculosis in Swiss cattle herds with a history of paratuberculosis. Acta Vet Scand. 2014;56(1):68. https://doi.org/10.1186/s13028-014-0068-9.
Article
PubMed
PubMed Central
Google Scholar
Whitlock RH, Wells SJ, Sweeney RW, Van Tiem J. ELISA and fecal culture for paratuberculosis (Johne’s disease): sensitivity and specificity of each method. Vet Microbiol. 2000;77:387–98.
Article
CAS
Google Scholar
McKenna SL, Keefe GP, Barkema HW, Sockett DC. Evaluation of three ELISAs for Mycobacterium avium subsp. paratuberculosis using tissue and fecal culture as comparison standards. Vet Microbiol. 2005;110(1–2):105–11. https://doi.org/10.1016/j.vetmic.2005.07.010.
Article
CAS
PubMed
Google Scholar
Clark S, Cross ML, Nadian A, Vipond J, Court P, Williams A, et al. Oral vaccination of guinea pigs with a Mycobacterium bovis bacillus Calmette-Guerin vaccine in a lipid matrix protects against aerosol infection with virulent M. bovis. Infect Immun. 2008;76:3771–6.
Article
CAS
Google Scholar
Costanzo G, Pinedo FA, Mon ML, Viale M, Gil A, Illia MC, et al. Accuracy assessment and screening of a dairy herd with paratuberculosis by three different ELISAs. Vet Microbiol. 2012;23;156(1-2):183-8.
Munjal SK, Tripathi BN, Paliwal OP. Progressive immunopathological changes during early stages of experimental infection of goats with Mycobacterium avium subspecies paratuberculosis. Vet Pathol. 2005;42:427–36.
Article
CAS
Google Scholar
Hemati Z, Haghkhah M, Derakhshandeh A, Chaubey KK, Singh SV. Novel recombinant Mce-truncated protein based ELISA for the diagnosis of Mycobacterium avium subsp. paratuberculosis infection in domestic livestock. PLoS One. 2020;15:0233695.
Article
Google Scholar
Hemati Z, Derakhshandeh A, Haghkhah M, Chaubey KK, Gupta S, Singh M, et al. Mammalian cell entry operons; novel and major subset candidates for diagnostics with special reference to Mycobacterium avium subspecies paratuberculosis infection. Vet Quarterl. 2019;39(1):65–75.
Article
Google Scholar
Paustian ML, Zhu X, Sreevatsan S, Robbe-Austerman S, Kapur V, Bannantine JP. Comparative genomic analysis of Mycobacterium avium subspecies obtained from multiple host species. BMC Genomics. 2008;9(1):1–5.
Article
Google Scholar
Castellanos E, Aranaz A, De Juan L, Álvarez J, Rodríguez S, Romero B, et al. Single nucleotide polymorphisms in the IS900 sequence of Mycobacterium avium subspecies paratuberculosis are strain type specific. J Clin Microbiol. 2009;47:2260–4.
Article
CAS
Google Scholar
Hui SL, Walter SD. Estimating the error rates of diagnostic tests. Biometrics. 1980;1:167–71.
Article
Google Scholar
Enøe C, Andersen S, Sørensen V, Willeberg P. Estimation of sensitivity, specificity and predictive values of two serologic tests for the detection of antibodies against Actinobacillus pleuropneumoniae serotype 2 in the absence of a reference test (gold standard). Prev Vet Med. 2001;51(3–4):227–43.
Article
Google Scholar
Branscum AJ, Gardner IA, Johnson WO. Estimation of diagnostic-test sensitivity and specificity through Bayesian modeling. Prev Vet Med. 2005;68(2–4):145–63.
Article
CAS
Google Scholar
Küntzel A, Weber M, Gierschner P, et al. Core profile of volatile organic compounds related to growth of Mycobacterium avium subspecies paratuberculosis - a comparative extract of three independent studies. PLoS One. 2019;14(8):e0221031.
Article
Google Scholar
Bates, A., O’Brien, R., Liggett, S. et al. Control of Mycobacterium avium subsp. paratuberculosis infection on a New Zealand pastoral dairy farm. BMC Vet Res 15, 266 (2019). https://doi.org/https://doi.org/10.1186/s12917-019-2014-6
Buczinski S, Arsenault J, Kostoulas P, Corbière F, Fecteau G, Dendukuri N. Accuracy of paratuberculosis diagnostic tests in small ruminants: protocol for a systematic review and meta-analysis. Anim Health Res Rev. 2019;0(1):98–102. https://doi.org/10.1017/S1466252319000082.
Article
CAS
Google Scholar
Hendrick S, Duffield T, Leslie K, Lissemore K, Archambault M, Kelton D. The prevalence of milk and serum antibodies to Mycobacterium avium subspecies paratuberculosis in dairy herds in Ontario. Can Vet J. 2005;46(12):1126–9.
PubMed
PubMed Central
Google Scholar
Angelidou E, Kostoulas P, Leontides L. Bayesian validation of a serum and milk ELISA for antibodies against Mycobacterium avium subspecies paratuberculosis in Greek dairy goats across lactation. J Dairy Sci. 2014;97(2):819–28. https://doi.org/10.3168/jds.2013-7218.
Article
CAS
PubMed
Google Scholar
Pillai SR, Jayarao BM. Application of IS900 PCR for detection of Mycobacterium avium subsp. paratuberculosis directly from raw milk. J Dairy Sci. 2002;85(5):1052–7. https://doi.org/10.3168/jds.S0022-0302(02)74165-9 PMID: 12086038.
Article
CAS
PubMed
Google Scholar
Khare S, Ficht TA, Santos RL, Romano J, Ficht AR, Zhang S, et al. Rapid and sensitive detection of Mycobacterium avium subsp. paratuberculosis in bovine milk and feces by a combination of immunomagnetic bead separation-conventional PCR and real-time PCR. J Clin Microbiol. 2004;42(3):1075–81. https://doi.org/10.1128/JCM.42.3.1075-1081.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muskens J, Mars MH, Elbers ARW, Van Maanen K, Bakker D. The results of using fecal culture as confirmation test of paratuberculosis-seropositive dairy cattle. J vet med. B infect dis vet. Public Health. 2003;50:231–4.
CAS
Google Scholar
Kostoulas P, Leontides L, Enøe C, Billinis C, Florou M, Sofia M. Bayesian estimation of sensitivity and specificity of serum ELISA and faecal culture for diagnosis of paratuberculosis in Greek dairy sheep and goats. Prev Vet Med. 2006;76(1–2):56–73.
Article
CAS
Google Scholar
Millar D, Ford J, Sanderson J, Withey S, Tizard M, Doran T, et al. IS900 PCR to detect mycobacterium paratuberculosis in retail supplies of whole pasteurized cows’ milk in England and Wales. Appl Environ Microbiol. 1996;62:3446–52.
Article
CAS
Google Scholar
Singh SV, Singh AV, Singh PK, Sohal JS, Singh NP. Evaluation of an indigenous ELISA for diagnosis of Johne’s disease and its comparison with commercial kits. Indian J Microbiol. 2007b Sep;47(3):251–8. https://doi.org/10.1007/s12088-007-0046-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kostoulas P, Nielsen SS, Branscum AJ, Johnson WO, Dendukuri N, Dhand NK, et al. STARD-BLCM: standards for the reporting of diagnostic accuracy studies that use Bayesian latent class models. Prev Vet Med. 2017;138:37–47.
Article
Google Scholar
Nielsen SS, Grønbæk C, Agger JF, Houe H. Maximum-likelihood estimation of sensitivity and specificity of ELISAs and faecal culture for diagnosis of paratuberculosis. Prev Vet Med. 2002;53(3):191–204.
Article
Google Scholar
Toft N, Jørgensen E, Højsgaard S. Diagnosing diagnostic tests: evaluating the assumptions underlying the estimation of sensitivity and specificity in the absence of a gold standard. Prev Vet Med. 2005;68(1):19–33.
Article
Google Scholar
Gardner IA, Stryhn H, Lind P, Collins MT. Conditional dependence between tests affects the diagnosis and surveillance of animal diseases. Prev Vet Med. 2000;45(1–2):107–22.
Article
CAS
Google Scholar
Dendukuri N, Joseph L. Bayesian approaches to modeling the conditional dependence between multiple diagnostic tests. Biometrics. 2001;57(1):158–67.
Article
CAS
Google Scholar
Alinovi CA, Ward MP, Lin TL, Moore GE. Wu CC. Real-time PCR, compared to liquid and solid culture media and ELISA, for the detection of Mycobacterium avium ssp. paratuberculosis. Vet Microbiol 2009;136(1–2): 177–179.
Kostoulas P . PriorGen: Generates Prior Distributions for Proportions. R package version. 2018; 1(2).
Spiegelhalter D, Thomas A, Best N, Lunn D. WinBUGS User Manual, 2003. URL http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/manual14.pdf.
Google Scholar
Spiegelhalter D, Best N, Carlin P, Van Der Linde A. Bayesian measures of model complexity and fit. J R Stat Soc Series b (Stat Methodol). 2002;64:583–639.
Article
Google Scholar