Guardabassi L, Schwarz S, Lloyd DH. Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother. 2004;54:321–32.
CAS
PubMed
Google Scholar
Saputra S, Jordan D, Worthing KA, Norris JM, Wong HS, Abraham R, et al. Antimicrobial resistance in coagulase-positive staphylococci isolated from companion animals in Australia: A one year study. PLoS One. 2017;12:e0176379.
PubMed
PubMed Central
Google Scholar
Abraham S, O’Dea M, Trott DJ, Abraham RJ, Hughes D, Pang S, et al. Isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica Typhimurium from cats. Sci Rep. 2016;6:35527.
CAS
PubMed
PubMed Central
Google Scholar
Platell JL, Cobbold RN, Johnson JR, Heisig A, Heisig P, Clabots C, et al. Commonality among fluoroquinolone-resistant sequence type ST131 extraintestinal Escherichia coli isolates from humans and companion animals in Australia. Antimicrob Agents Chemother. 2011;55:3782–7.
CAS
PubMed
PubMed Central
Google Scholar
Beck KM, Waisglass SE, Dick HLN, Weese JS. Prevalence of meticillin-resistant staphylococcus pseudintermedius (MRSP) from skin and carriage sites of dogs after treatment of their meticillin-resistant or meticillin-sensitive staphylococcal pyoderma. Vet Dermatol. 2012;23(369–75):e66–7.
Google Scholar
Klevens RM, Edwards JR, Richards CL, Horan TC, Gaynes RP, Pollock DA, et al. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 2007;122:160–6.
PubMed
PubMed Central
Google Scholar
Carmeli Y. Strategies for managing today’s infections. Clin Microbiol Infect. 2008;14:22–31.
PubMed
Google Scholar
Anonymous. European surveillance of veterinary antimicrobial consumption (ESVAC). European Medicines Agency 2018. https://www.ema.europa.eu/en/veterinary-regulatory/overview/antimicrobial-resistance/european-surveillance-veterinary-antimicrobial-consumption-esvac. Accessed 20 May 2021.
European Food Safety Authority. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J. 2019;17:e05598.
Reimschuessel R, Grabenstein M, Guag J, Nemser SM, Song K, Qiu J, et al. Multilaboratory survey to evaluate Salmonella prevalence in diarrheic and nondiarrheic dogs and cats in the United States between 2012 and 2014. J Clin Microbiol. 2017;55:1350–68.
PubMed
PubMed Central
Google Scholar
Olufemi O, Adetosoye A. Salmonella Typhimurium Typhimurium infection in diarrhoeic and non-diarrhoiec infection in diarrhoeic and non-diarrhoiec dogs in Ibadan, Nigeria. 2009;79. https://www.researchgate.net/publication/242156294_Salmonella_Typhimurium_Typhimurium_infection_in_diarrhoeic_and_non-diarrhoiec_infection_in_diarrhoeic_and_non-diarrhoiec_dogs_in_Ibadan_Nigeria_dogs_in_Ibadan_Nigeria.
Seepersadsingh N, Adesiyun AA, Seebaransingh R. Prevalence and antimicrobial resistance of Salmonella spp. in non-diarrhoeic dogs in Trinidad. J Vet Med B Infect Dis Vet Public Health. 2004;51:337–42.
CAS
PubMed
Google Scholar
Jajere SM, Onyilokwu SA, Adamu NB, Atsanda NN, Saidu AS, Adamu SG, et al. Prevalence of salmonella infection in dogs in Maiduguri, northeastern Nigeria. Int J Microbiol. 2014;2014:392548.
PubMed
PubMed Central
Google Scholar
Bataller E, García-Romero E, Llobat L, Lizana V, Jiménez-Trigos E. Dogs as a source of Salmonella spp. in apparently healthy dogs in the Valencia region. Could it be related with intestinal lactic acid bacteria? BMC Vet Res. 2020;16:268.
CAS
PubMed
PubMed Central
Google Scholar
Lowden P, Wallis C, Gee N, Hilton A. Investigating the prevalence of Salmonella in dogs within the midlands region of the United Kingdom. BMC Vet Res. 2015;11:239.
PubMed
PubMed Central
Google Scholar
Tsai H-J, Huang H-C, Lin C-M, Lien Y-Y, Chou C-H. Salmonellae and campylobacters in household and stray dogs in northern Taiwan. Vet Res Commun. 2007;31:931–9.
PubMed
Google Scholar
Wright JG, Tengelsen LA, Smith KE, Bender JB, Frank RK, Grendon JH, et al. Multidrug-resistant Salmonella Typhimurium in four animal facilities. Emerging Infect Dis. 2005;11:1235–41.
CAS
Google Scholar
Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev. 2004;28:405–40.
CAS
PubMed
Google Scholar
Coman MM, Verdenelli MC, Cecchini C, Belà B, Gramenzi A, Orpianesi C, et al. Probiotic characterization of Lactobacillus isolates from canine faeces. J Appl Microbiol. 2019;126:1245–56.
CAS
PubMed
Google Scholar
White R, Atherly T, Guard B, Rossi G, Wang C, Mosher C, et al. Randomized, controlled trial evaluating the effect of multi-strain probiotic on the mucosal microbiota in canine idiopathic inflammatory bowel disease. Gut Microbes. 2017;8:451–66.
PubMed
PubMed Central
Google Scholar
Wolfenden RE, Pumford NR, Morgan MJ, Shivaramaiah S, Wolfenden AD, Pixley CM, et al. Evaluation of selected direct-fed microbial candidates on live performance and Salmonella reduction in commercial Turkey brooding houses. Poult Sci. 2011;90:2627–31.
CAS
PubMed
Google Scholar
Shivaramaiah S, Pumford NR, Morgan MJ, Wolfenden RE, Wolfenden AD, Torres-Rodríguez A, et al. Evaluation of Bacillus species as potential candidates for direct-fed microbials in commercial poultry. Poult Sci. 2011;90:1574–80.
CAS
PubMed
Google Scholar
Kumar S, Pattanaik AK, Sharma S, Jadhav SE, Dutta N, Kumar A. Probiotic potential of a Lactobacillus bacterium of canine Faecal-origin and its impact on select gut health indices and immune response of dogs. Probiotics Antimicrob Proteins. 2017;9:262–77.
CAS
PubMed
Google Scholar
Kantere. Enteric pathogens of dogs and cats with public health implications. Am J Anim Vet Sci. 2014;9:84–94.
Google Scholar
Grześkowiak Ł, Endo A, Beasley S, Salminen S. Microbiota and probiotics in canine and feline welfare. Anaerobe. 2015;34:14–23.
PubMed
PubMed Central
Google Scholar
Corcionivoschi N, Drinceanu D, Pop IM, Stack D, Ştef L, Julean C, et al. The effect of probiotics on animal health. Sci Papers Animal Sci Biotechnol. 2010;43:35–41.
Google Scholar
Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, et al. Benefits and inputs from lactic acid Bacteria and their Bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front Microbiol. 2019;10:57.
PubMed
PubMed Central
Google Scholar
Biagi G, Cipollini I, Pompei A, Zaghini G, Matteuzzi D. Effect of a Lactobacillus animalis strain on composition and metabolism of the intestinal microflora in adult dogs. Vet Microbiol. 2007;124:160–5.
CAS
PubMed
Google Scholar
Kim E, Kang Y, Bang T, Lee M, Lee S, Choi I, et al. Characterization of Lactobacillus reuteri BCLR-42 and Lactobacillus plantarum BCLP-51 as novel dog probiotics with innate immune enhancing properties. Korean J Vet Res. 2016;56:75–84.
Google Scholar
McCoy S, Gilliland SE. Isolation and characterization of Lactobacillus species having potential for use as probiotic cultures for dogs. J Food Sci. 2007;72:M94–7.
CAS
PubMed
Google Scholar
Martín R, Olivares M, Pérez M, Xaus J, Torre C, Fernández L, et al. Identification and evaluation of the probiotic potential of lactobacilli isolated from canine milk. Vet J. 2010;185:193–8.
PubMed
Google Scholar
Tang Y, Manninen TJK, Saris PEJ. Dominance of Lactobacillus acidophilus in the facultative jejunal Lactobacillus microbiota of fistulated beagles. Appl Environ Microbiol. 2012;78:7156–9.
CAS
PubMed
PubMed Central
Google Scholar
Beasley SS, Manninen TJK, Saris PEJ. Lactic acid bacteria isolated from canine faeces. J Appl Microbiol. 2006;101:131–8.
CAS
PubMed
Google Scholar
Schmitz S, Suchodolski J. Understanding the canine intestinal microbiota and its modification by pro-, pre- and synbiotics - what is the evidence? Vet Med Sci. 2016;2:71–94.
PubMed
PubMed Central
Google Scholar
Manninen TJK, Rinkinen ML, Beasley SS, Saris PEJ. Alteration of the canine small-intestinal lactic acid bacterium microbiota by feeding of potential probiotics. Appl Environ Microbiol. 2006;72:6539–43.
CAS
PubMed
PubMed Central
Google Scholar
Diaz MA, Bik EM, Carlin KP, Venn-Watson SK, Jensen ED, Jones SE, et al. Identification of Lactobacillus strains with probiotic features from the bottlenose dolphin (Tursiops truncatus). J Appl Microbiol. 2013;115:1037–51.
CAS
PubMed
PubMed Central
Google Scholar
Casey PG, Casey GD, Gardiner GE, Tangney M, Stanton C, Ross RP, et al. Isolation and characterization of anti-Salmonella lactic acid bacteria from the porcine gastrointestinal tract. Lett Appl Microbiol. 2004;39:431–8.
CAS
PubMed
Google Scholar
Kim PI, Jung MY, Chang Y-H, Kim S, Kim S-J, Park Y-H. Probiotic properties of Lactobacillus and Bifidobacterium strains isolated from porcine gastrointestinal tract. Appl Microbiol Biotechnol. 2007;74:1103–11.
CAS
PubMed
Google Scholar
A.C M, Hinton A Jr, H M. Inhibition of Growth of Escherichia coli, Salmonella typhimurium, and Clostridia perfringens on Chicken Feed Media by Lactobacillus salivarius and Lactobacillus plantarum. Int J Poult Sci. 2004;3. https://doi.org/10.3923/ijps.2004.603.607.
Pascual M, Hugas M, Badiola JI, Monfort JM, Garriga M. Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Appl Environ Microbiol. 1999;65:4981–6.
CAS
PubMed
PubMed Central
Google Scholar
Frizzo L, Soto LP, Bertozzi E, Sequeira G, Martí LE, Rosmini M. Evaluación in Vitro de las Capacidades Probióticas Microbianas Orientadas al Diseño de Inóculos Probióticos Multiespecie para Ser Utilizados en la Crianza de Terneros. Rev FAVE Cienc Vet. 2006;5:61–72.
Google Scholar
Adetoye A, Pinloche E, Adeniyi BA, Ayeni FA. Characterization and anti-salmonella activities of lactic acid bacteria isolated from cattle faeces. BMC Microbiol. 2018;18:96.
PubMed
PubMed Central
Google Scholar
O’Mahony D, Murphy S, Boileau T, Park J, O’Brien F, Groeger D, et al. Bifidobacterium animalis AHC7 protects against pathogen-induced NF-κB activation in vivo. BMC Immunol. 2010;11:63.
PubMed
PubMed Central
Google Scholar
Messaoudi S, Manai M, Kergourlay G, Prévost H, Connil N, Chobert J-M, et al. Lactobacillus salivarius: bacteriocin and probiotic activity. Food Microbiol. 2013;36:296–304.
CAS
PubMed
Google Scholar
Morelli L, Capurso L. FAO/WHO guidelines on probiotics: 10 years later. J Clin Gastroenterol. 2012;46(Suppl):S1–2.
PubMed
Google Scholar
Mitsuoka T, Kimura N, Kobayashi A. Studies on the composition of the fecal flora of healthy dogs with the special references of Lactobacillus flora and Bifidobacterium flora (author’s transl). Zentralbl Bakteriol Orig A. 1976;235:485–93.
CAS
PubMed
Google Scholar
Rinkinen M, Jalava K, Westermarck E, Salminen S, Ouwehand AC. Interaction between probiotic lactic acid bacteria and canine enteric pathogens: a risk factor for intestinal Enterococcus faecium colonization? Vet Microbiol. 2003;92:111–9.
PubMed
Google Scholar
Vahjen W, Männer K. The effect of a probiotic Enterococcus faecium product in diets of healthy dogs on bacteriological counts of Salmonella spp., Campylobacter spp. and Clostridium spp. in faeces. Arch Tierernahr. 2003;57:229–33.
CAS
PubMed
Google Scholar
Arihara K, Ogihara S, Mukai T, Itoh M, Kondo Y. Salivacin 140, a novel bacteriocin from Lactobacillus salivarius subsp. salicinius T140 active against pathogenic bacteria. Lett Appl Microbiol. 1996;22:420–4.
CAS
PubMed
Google Scholar
Ocaña VS, De Ruiz P, Holgado AA, Nader-Macías ME. Characterization of a bacteriocin-like substance produced by a vaginal Lactobacillus salivarius strain. Appl Environ Microbiol. 1999;65:5631–5.
PubMed
PubMed Central
Google Scholar
Robredo B, Torres C. Bacteriocin production by Lactobacillus salivarius of animal origin. J Clin Microbiol. 2000;38:3908–9.
CAS
PubMed
PubMed Central
Google Scholar
Maldonado NC, de Ruiz CS, Otero MC, Sesma F, Nader-Macías ME. Lactic acid bacteria isolated from young calves--characterization and potential as probiotics. Res Vet Sci. 2012;92:342–9.
CAS
PubMed
Google Scholar
BOE.es - Documento BOE-A-2013-1337. https://www.boe.es/eli/es/rd/2013/02/01/53. Accessed 11 Feb 2021.
Harris LJ, Daeschel MA, Stiles ME, Klaenhammer TR. Antimicrobial activity of lactic acid Bacteria against listeria monocytogenes. J Food Prot. 1989;52:384–7.
CAS
PubMed
Google Scholar
vet01s_sample.pdf. https://clsi.org/media/1530/vet01s_sample.pdf. Accessed 27 Jan 2020.
EUCAST: Clinical breakpoints and dosing of antibiotics. https://www.eucast.org/clinical_breakpoints/. Accessed 20 May 2021.
Lee S-C, Lo H-J, Fung C-P, Lee N, See L-C. Disk diffusion test and E-test with enriched Mueller-Hinton agar for determining susceptibility of Candida species to voriconazole and fluconazole. J Microbiol Immunol Infect. 2009;42:148–53.
CAS
PubMed
Google Scholar