Halliwell R. Revised nomenclature for veterinary allergy. Vet Immunol Immunopathol. 2006;114:207–8.
PubMed
Google Scholar
Marsella R, Olivry T, Carlotti DN. Current evidence of skin barrier dysfunction in human and canine atopic dermatitis. Vet Dermatol. 2011;22:239–48.
PubMed
Google Scholar
Pucheu-Haston CM, Santoro D, Bizikova P, et al. Review: innate immunity, lipid metabolism and nutrition in canine atopic dermatitis. Vet Dermatol. 2015;26:104–e128.
PubMed
Google Scholar
Chermprapai S, Broere F, Gooris G, et al. Altered lipid properties of the stratum corneum in canine atopic dermatitis. Biochim Biophys Acta Biomembr. 2018;1860:526–33.
CAS
PubMed
Google Scholar
Olivry T, DeBoer DJ, Favrot C, et al. Treatment of canine atopic dermatitis: 2010 clinical practice guidelines from the international task force on canine atopic dermatitis. Vet Dermatol. 2010;21:233–48.
PubMed
Google Scholar
Logas D, Kunkle GA. Double-blinded crossover study with marine oil supplementation containing high-dose icosapentaenoic acid for the treatment of canine pruritic skin disease. Vet Dermatol. 1994;5:99–104.
PubMed
Google Scholar
Muller MR, Linek M, Lowenstein C, et al. Evaluation of cyclosporine-sparing effects of polyunsaturated fatty acids in the treatment of canine atopic dermatitis. Vet J. 2016;210:77–81.
CAS
PubMed
Google Scholar
Saevik BK, Bergvall K, Holm BR, et al. A randomized, controlled study to evaluate the steroid sparing effect of essential fatty acid supplementation in the treatment of canine atopic dermatitis. Vet Dermatol. 2004;15:137–45.
PubMed
Google Scholar
Mueller RS, Fieseler KV, Fettman MJ, et al. Effect of omega-3 fatty acids on canine atopic dermatitis. J Small Anim Pract. 2004;45:293–7.
CAS
PubMed
Google Scholar
Bensignor E, Morgan DM, Nuttall T. Efficacy of an essential fatty acid-enriched diet in managing canine atopic dermatitis: a randomized, single-blinded, cross-over study. Vet Dermatol. 2008;19:156–62.
PubMed
Google Scholar
Schumann J, Basiouni S, Guck T, et al. Treating canine atopic dermatitis with unsaturated fatty acids: the role of mast cells and potential mechanisms of action. J Anim Physiol Anim Nutr (Berl). 2014;98:1013–20.
CAS
Google Scholar
LeBlanc CJ, Horohov DW, Bauer JE, et al. Effects of dietary supplementation with fish oil on in vivo production of inflammatory mediators in clinically normal dogs. Am J Vet Res. 2008;69:486–93.
CAS
PubMed
Google Scholar
Inman AO, Olivry T, Dunston SM, et al. Electron microscopic observations of stratum corneum intercellular lipids in normal and atopic dogs. Vet Pathol. 2001;38:720–3.
CAS
PubMed
Google Scholar
Popa I, Pin D, Remoue N, et al. Analysis of epidermal lipids in normal and atopic dogs, before and after administration of an oral omega-6/omega-3 fatty acid feed supplement. A pilot study. Vet Res Commun. 2011;35:501–9.
PubMed
Google Scholar
Shimada K, Yoon JS, Yoshihara T, et al. Increased transepidermal water loss and decreased ceramide content in lesional and non-lesional skin of dogs with atopic dermatitis. Vet Dermatol. 2009;20:541–6.
PubMed
Google Scholar
Reiter LV, Torres SM, Wertz PW. Characterization and quantification of ceramides in the nonlesional skin of canine patients with atopic dermatitis compared with controls. Vet Dermatol. 2009;20:260–6.
PubMed
Google Scholar
Magrone T, Jirillo E. Influence of polyphenols on allergic immune reactions: mechanisms of action. Proc Nutr Soc. 2012;71:316–21.
CAS
PubMed
Google Scholar
Singh A, Holvoet S, Mercenier A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy. 2011;41:1346–59.
PubMed
Google Scholar
Niedzwiecki A, Roomi MW, Kalinovsky T, et al. Anticancer efficacy of polyphenols and their combinations. Nutrients. 2016;8(9):552.
Oz HS. Chronic inflammatory diseases and green tea polyphenols. Nutrients. 2017;9(6):561.
Zeinali M, Rezaee SA, Hosseinzadeh H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed Pharmacother. 2017;92:998–1009.
CAS
PubMed
Google Scholar
Chung S-Y, Champagne ET. Reducing the allergenic capacity of peanut extracts and liquid peanut butter by phenolic compounds. Food Chem. 2009;115:1345–9.
CAS
Google Scholar
Gong J, Chen S-S. Polyphenolic antioxidants inhibit peptide presentation by antigen-presenting cells. Int Immunopharmacol. 2003;3:1841–52.
CAS
PubMed
Google Scholar
Kim J-Y, Kina T, Iwanaga Y, et al. Tea polyphenol inhibits allostimulation in mixed lymphocyte culture. Cell Transplant. 2007;16:75–83.
PubMed
Google Scholar
Iwamura C, Shinoda K, Yoshimura M, et al. Naringenin chalcone suppresses allergic asthma by inhibiting the type-2 function of CD4 T cells. Allergol Intern. 2010;59:67–73.
CAS
Google Scholar
Tomita M, Irwin KI, Xie ZJ, et al. Tea pigments inhibit the production of type 1 (T(H1)) and type 2 (T(H2)) helper T cell cytokines in CD4(+) T cells. Phytother Res. 2002;16:36–42.
CAS
PubMed
Google Scholar
Zuercher AW, Holvoet S, Weiss M, et al. Polyphenol-enriched apple extract attenuates food allergy in mice. Clin Exp Allergy. 2010;40:942–50.
CAS
PubMed
Google Scholar
Kawai K, Tsuno NH, Kitayama J, et al. Catechin inhibits adhesion and migration of peripheral blood B cells by blocking CD11b. Immunopharm Immunot. 2011;33:391–7.
CAS
Google Scholar
Yano S, Umeda D, Maeda N, et al. Dietary apigenin suppresses IgE and inflammatory cytokines production in C57BL/6N mice. J Agric Food Chem. 2006;54:5203–7.
CAS
PubMed
Google Scholar
Kanoh R, Hatano T, Ito H, et al. Effects of tannins and related polyphenols on superoxide-induced histamine release from rat peritoneal mast cells. Phytomedicine. 2000;7:297–302.
CAS
PubMed
Google Scholar
Scheller S, Dworniczak S, Pogorzelska T, et al. Effect of quercetin, caffeic acid and caffeic acid phenylethyl ester, solubilized in non-ionic surfactants, on histamine release in vivo and in vitro. Arzneimittelforschung. 2000;50:72–6.
CAS
PubMed
Google Scholar
Pearce FL, Dean Befus A, Bienenstock J. Mucosal mast cells. J Allergy Clin Immunol. 1984;73:819–23.
CAS
PubMed
Google Scholar
Finn DF, Walsh JJ. Twenty-first century mast cell stabilizers. Br J Pharmacol. 2013;170:23–37.
CAS
PubMed
PubMed Central
Google Scholar
Sivaranjani N, Rao SV, Rajeev G. Role of reactive oxygen species and antioxidants in atopic dermatitis. J Clin Diagn Res. 2013;7:2683–5.
CAS
PubMed
PubMed Central
Google Scholar
Kapun AP, Salobir J, Levart A, et al. Oxidative stress markers in canine atopic dermatitis. Res Vet Sci. 2012;92:469–70.
CAS
PubMed
Google Scholar
Jaffary F, Faghihi G, Mokhtarian A, et al. Effects of oral vitamin E on treatment of atopic dermatitis: a randomized controlled trial. J Res Med Sci. 2015;20:1053–7.
CAS
PubMed
PubMed Central
Google Scholar
Plevnik Kapun A, Salobir J, Levart A, et al. Vitamin E supplementation in canine atopic dermatitis: improvement of clinical signs and effects on oxidative stress markers. Vet Rec. 2014;175:560.
CAS
PubMed
Google Scholar
Shin J, Kim YJ, Kwon O, et al. Associations among plasma vitamin C, epidermal ceramide and clinical severity of atopic dermatitis. Nutr Res Pract. 2016;10:398–403.
CAS
PubMed
PubMed Central
Google Scholar
Leveque N, Robin S, Muret P, et al. High iron and low ascorbic acid concentrations in the dermis of atopic dermatitis patients. Dermatology. 2003;207:261–4.
CAS
PubMed
Google Scholar
Jewell D, Gross K, Bendar G, et al. Polyphenols affect cytokines and when included in a food with enhanced fatty acids and antioxidants reduce skin erythema in dogs with atopic dermatitis. In: 11th world congress on polyphenols applications: Vienna polyphenols; 2017.
Google Scholar
Witzel-Rollins A, Murphy M, Becvarova I, et al. Non-controlled, open-label clinical trial to assess the effectiveness of a dietetic food on pruritus and dermatologic scoring in atopic dogs. BMC Vet Res. 2019;15:220.
CAS
PubMed
PubMed Central
Google Scholar
Olivry T, Saridomichelakis M, Nuttall T, et al. Validation of the Canine Atopic Dermatitis Extent and Severity Index (CADESI)-4, a simplified severity scale for assessing skin lesions of atopic dermatitis in dogs. Vet Dermatol. 2014;25(77–85):e25.
Google Scholar
National Research Council. Nutrient requirements of dogs and cats. Washington, D.C.: The National Academies Press; 2006.
Google Scholar
Karuppagounder V, Arumugam S, Thandavarayan RA, et al. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drug Discov Today. 2016;21:632–9.
CAS
PubMed
Google Scholar
Shen Y, Xu J. Resveratrol exerts therapeutic effects on mice with atopic dermatitis. Wounds. 2019;31:279–84.
PubMed
Google Scholar
Hensel P, Santoro D, Favrot C, et al. Canine atopic dermatitis: detailed guidelines for diagnosis and allergen identification. BMC Vet Res. 2015;11:196.
PubMed
PubMed Central
Google Scholar
Herchi W, Arráez-Román D, et al. Phenolic compounds in flaxseed: a review of their properties and analytical methods. An overview of the last decade. J Oleo Science. 2014;63:7–14.
CAS
Google Scholar
Rhodes DH, Hoffmann L, Rooney WL, et al. Genome-wide association study of grain polyphenol concentrations in global Sorghum [Sorghum bicolor (L.) Moench] germplasm. J Agric Food Chem. 2014;62:10916–27.
CAS
PubMed
Google Scholar
Pérez-Jiménez J, Neveu V, Vos F, et al. Identification of the 100 richest dietary sources of polyphenols: an application of the phenol-explorer database. Eur J Clin Nutr. 2010;64:S112.
PubMed
Google Scholar
Tan BL, Norhaizan ME. Scientific evidence of rice by-products for cancer prevention: chemopreventive properties of waste products from rice milling on carcinogenesis in vitro and in vivo. Biomed Res Int. 2017;2017:9017902.
PubMed
PubMed Central
Google Scholar
Rybnicek J, Lau-Gillard PJ, Harvey R, et al. Further validation of a pruritus severity scale for use in dogs. Vet Dermatol. 2009;20:115–22.
CAS
PubMed
Google Scholar