Wilson DJ, Gonzalez RN, Das HH. Bovine mastitis pathogens in the New York and Pennsylvania: prevalence and effects on somatic cell count and milk production. J Dairy Sci. 1997;80:2592–8.
Article
CAS
PubMed
Google Scholar
Langoni H, Camargo da Silva CP, Troncarelli MZ, Tata A, Belaz KRA, Eberlin MN, Joaquim SF, Guimarães FF, Pardo RB, Gomes EN. Short communication: Identification of Corynebacterium bovis by MALDI-mass spectrometry. J Dairy Sci. 2017;100:4287–9.
Article
CAS
PubMed
Google Scholar
Dalen G, Rachah A, Nørstebø H, Schukken YH, Reksen O. Dynamics of somatic cell count patterns as a proxy for transmission of mastitis pathogens. J Dairy Sci. 2019;102(12):11349–58.
Article
CAS
PubMed
Google Scholar
Gonçalves JL, Tomazi T, Barreiro JR, Beuron DC, Arcari MA, Lee SH, Martins CM, Araújo Junior JP, dos Santos MV. Effects of bovine subclinical mastitis caused by Corynebacterium spp. on somatic cell count, milk yield and composition by comparing contralateral quarters. Vet J. 2016;209:87–92.
Article
PubMed
Google Scholar
Huxley JN, Helps CR, Bradley AJ. Identification of Corynebacterium bovis by endonuclease restriction analysis of the 16S rRNA gene sequence. J Dairy Sci. 2004;87:38–45.
Article
CAS
PubMed
Google Scholar
Brooks BW, Barnum DA. Experimental colonization of the bovine teat duct with Corynebacterium bovis and the effect on milk somatic cell counts. Can J Comp Med. 1984;48:141–5.
CAS
PubMed
PubMed Central
Google Scholar
Porcellato D, Meisal R, Bombelli A, Narvhus JA. A core microbiota dominates a rich microbial diversity in the bovine udder and may indicate presence of dysbiosis. Sci Rep. 2020;10(1):21608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rault L, Lévêque PA, Barbey S, Launay F, Larroque H, Le Loir Y, Germon P, Guinard-Flament J, Even S. Bovine teat cistern microbiota composition and richness are associated with the immune and microbial responses during transition to once-daily milking. Front Microbiol. 2020;11:602404.
Article
PubMed
PubMed Central
Google Scholar
Braem G, De Vliegher S, Verbist B, Heyndrickx M, Leroy F, De Vuyst L. Culture-independent exploration of the teat apex microbiota of dairy cows reveals a wide bacterial species diversity. Vet Microbiol. 2012;157(3–4):383–90.
Article
PubMed
Google Scholar
Braem G, De Vliegher S, Verbist B, Piessens V, Van Coillie E, De Vuyst L, Leroy F. Unraveling the microbiota of teat apices of clinically healthy lactating dairy cows, with special emphasis on coagulase-negative staphylococci. J Dairy Sci. 2013;96(3):1499–510.
Article
CAS
PubMed
Google Scholar
Derakhshani H, Plaizier JC, De Buck J, Barkema HW, Khafipour E. Composition and co-occurrence patterns of the microbiota of different niches of the bovine mammary gland: potential associations with mastitis susceptibility, udder inflammation, and teat-end hyperkeratosis. Anim Microbiome. 2020;2:11.
Article
PubMed
PubMed Central
Google Scholar
Benites NR, Melville PA, Costa EO. Evaluation of the microbiological status of milk and various structures in mammary glands from naturally infected dairy cows. Trop Anim Health Prod. 2003;35:301–7.
Article
CAS
PubMed
Google Scholar
Pankey JW, Nickerson SC, Boddie RL, Hogan JS. Effects of Corynebacterium bovis infection on susceptibility to major mastitis pathogens. J Dairy Sci. 1985;68:2684–93.
Article
CAS
PubMed
Google Scholar
Gonçalves JL, Kamphuis C, Vernooij H, Araújo JP Jr, Grenfell RC, Juliano L, Anderson KL, Hogeveen H, Dos Santos MV. Pathogen effects on milk yield and composition in chronic subclinical mastitis in dairy cows. Vet J. 2020;262:105473.
Article
PubMed
CAS
Google Scholar
Rainard P, Poutrel B. Effect of naturally occurring intramammary infections: by minor pathogens on new infections by major pathogens in cattle. Am J Vet Res. 1988;49:327–9.
CAS
PubMed
Google Scholar
Sordillo LM, Oliver SP, Guidry AJ, Dermody JT. Humoral immune response of bovine mammary glands colonized with Corynebacterium bovis. Enumeration of plasma cell populations in tissue and immunoglobulin concentrations in milk. J Vet Med. 1988;35:617–27.
Article
CAS
Google Scholar
Lam TJ, van Vliet JH, Schukken YH, Grommers FJ, van Velden-Russcher A, Barkema HW, Brand A. The effect of discontinuation of postmilking teat disinfection in low somatic cell count herds. I. Incidence of clinical mastitis. Vet J. 1997;19:41–7.
CAS
Google Scholar
Schukken YH, Leslie KE, Barnum DA, Mallard BA, Lumsden JH, Dick GH, Vessie ME, Kehrli ME. Experimental Staphylococcus aureus intramammary challenge in late lactation dairy cows: quarter and cow effects determining the probability of infection. J Dairy Sci. 1999;82:2393–401.
Article
CAS
PubMed
Google Scholar
Rainard P, Riollet C. Mobilization of neutrophils and defense of the bovine mammary gland. Reprod Nutr Dev. 2003;43:439–57.
Article
PubMed
Google Scholar
Blagitz MG, Souza FN, Santos BP, Batista CF, Parra AC, Azevedo LF, Melville PA, Benites NR, Della Libera AM. Function of milk polymorphonuclear neutrophil leukocytes in bovine mammary glands infected with Corynebacterium bovis. J Dairy Sci. 2013;96:3750–7.
Article
CAS
PubMed
Google Scholar
Blagitz MG, Souza FN, Batista CF, Santos BP, Parra AC, Azevedo LFF, Della Libera AMMP. Expression of CD14 and toll-like receptors 2 and 4 by milk neutrophils in bovine mammary glands infected with Corynebacterium bovis. Pesq Vet Bras. 2015;35:1–5.
Article
Google Scholar
Barkema HW, Schukken YH, Lam TJ, Galligan DT, Beiboer ML, Brand A. Estimation of interdependence among quarters of the bovine udder with subclinical mastitis and implications for analysis. J Dairy Sci. 1997;80(8):1592–9.
Article
CAS
PubMed
Google Scholar
Blagitz MG, Souza FN, Batista CF, Diniz SA, Azevedo LF, Silva MX, Haddad JP, Heinemann MB, Cerqueira MM, Della Libera AM. Flow cytometric analysis: Interdependence of healthy and infected udder quarters. J Dairy Sci. 2015;98(4):2401–8.
Article
CAS
PubMed
Google Scholar
Bronzo V, Lopreiato V, Riva F, Amadori M, Curone G, Addis MF, Cremonesi P, Moroni P, Trevisi E, Castiglioni B. The role of innate immune response and microbiome in resilience of dairy cattle to disease: the mastitis model. Animals (Basel). 2020;10(8):1397.
Article
Google Scholar
Archer N, Egan SA, Coffey TJ, Emes RD, Addis MF, Ward PN, Blanchard AM, Leigh JA. A paradox in bacterial pathogenesis: activation of the local macrophage inflammasome is required for virulence of Streptococcus uberis. Pathogens. 2020;9(12):997.
Article
CAS
PubMed Central
Google Scholar
Günther J, Czabanska A, Bauer I, Leigh JA, Holst O, Seyfert HM. Streptococcus uberis strains isolated from the bovine mammary gland evade immune recognition by mammary epithelial cells, but not of macrophages. Vet Res. 2016;47:13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alnakip ME, Quintela-Baluja M, Böhme K, Fernández-No I, Caamaño-Antelo S, Calo-Mata P, Barros-Velázquez J. The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. J Vet Med. 2014;31:659801.
Google Scholar
Dunkley ML, Clancy RL, Cripps AW. A role for CD4+ T cells from orally immunized rats in enhanced clearance of Pseudomonas aeruginosa from the lung. Immunology. 1994;83(3):362–9.
CAS
PubMed
PubMed Central
Google Scholar
Rivas AL, Quimby FW, Coksaygan O, Olmstead L, Lein DH. Longitudinal evaluation of CD4+ and CD8+ peripheral blood and mammary gland lymphocytes in cows experimentally inoculated with Staphylococcus aureus. Can J Vet Res. 2000;64(4):232–7.
CAS
PubMed
PubMed Central
Google Scholar
Souza FN, Blagitz MG, Batista CF, Takano PV, Gargano RG, Diniz SA, Silva MX, Ferronatto JA, Santos KR, Heinemann MB, De Vliegher S, Della Libera AMMP. Immune response in nonspecific mastitis: what can it tell us? J Dairy Sci. 2020;103:5376–86.
Article
CAS
PubMed
Google Scholar
Park YH, Joo YS, Park JY, Moon JS, Kim SH, Kwon NH, Ahn JS, Davis WC, Davies CJ. Characterization of lymphocyte subpopulations and major histocompatibility complex haplotypes of mastitis-resistant and susceptible cows. J Vet Sci. 2004;5(1):29–39.
Article
PubMed
Google Scholar
Soltys J, Quinn MT. Selective recruitment of T-cell subsets to the udder during staphylococcal and streptococcal mastitis: analysis of lymphocyte subsets and adhesion molecule expression. Infect Immun. 1999;67:293–302.
Google Scholar
Park YH, Fox LK, Hamilton MJ, Davis WC. Suppression of proliferative response of BoCD4+ T lymphocytes by activated BoCD8+ T lymphocytes in the mammary gland of cows with Staphylococcus aureus mastitis. Vet Immunol Immunopathol. 1993;36:137–51.
Article
CAS
PubMed
Google Scholar
Shafer-Weaver KA, Sordillo LM. Bovine CD8+ suppressor lymphocytes alter immune responsiveness during the postpartum period. Vet Immunol Immunopathol. 1997;56:53–64.
Article
CAS
PubMed
Google Scholar
Nieto Farias MV, Souza FN, Lendez PA, Martínez-Cuesta L, Santos KR, Della Libera AMMP, Ceriani MC, Dolcini GL. Lymphocyte proliferation and apoptosis of lymphocyte subpopulations in bovine leukemia virus-infected dairy cows with high and low proviral load. Vet Immunol Immunopathol. 2018;206:41–8.
Article
CAS
PubMed
Google Scholar
Rainard P, Poutrel B. Dynamics of nonclinical bovine intramammary infections with major and minor pathogens. Am J Vet Res. 1982;43:2143–6.
CAS
PubMed
Google Scholar
Brooks BW, Barnum DA, Meek AH. An observational study of Corynebacterium bovis in selected Ontario dairy herds. Can J Comp Med. 1983;47:73–8.
CAS
PubMed
PubMed Central
Google Scholar
Zadoks RN, Allore HG, Barkema HW, Sampimon OC, Wellenberg GJ, Gröhn YT, Schukkent YH. Cow- and quarter-level risk factors for Streptococcus uberis and Staphylococcus aureus mastitis. J Dairy Sci. 2001;84:2649–63.
Article
CAS
PubMed
Google Scholar
Reyher KK, Dohoo IR, Scholl DT, Keefe GP. Evaluation of minor pathogens intramammary infection, susceptibility parameters, and somatic cell counts on the development of new intramammary infections with major mastitis pathogens. J Dairy Sci. 2012;95:3766–80.
Article
CAS
PubMed
Google Scholar
Woodward WD, Besser TE, Ward AC, Corbeil LB. In vitro growth inhibition of mastitis pathogens by bovine teat skin normal flora. Can J Vet Res. 1987;51(1):27–31.
CAS
PubMed
PubMed Central
Google Scholar
Blagitz MG, Souza FN, Batista CF, Azevedo LF, Benites NR, Melville PA, Diniz SA, Silva MX, Haddad JP, Heinnemann MB, Cerqueira MM, Della Libera AM. The neutrophil function and lymphocyte profile of milk from bovine mammary glands infected with Streptococcus dysgalactiae. J Dairy Res. 2015;82:460–9.
Article
CAS
PubMed
Google Scholar
Souza FN, Ramos Sanchez EM, Heinemann MB, Gidlund MA, Reis LC, Blagitz MG, Della Libera AMMP, Cerqueira MMOP. The innate immunity in bovine mastitis: the role of pattern-recognition receptors. Am J Immunol. 2012;8:166–78.
Article
CAS
Google Scholar
Bansal BK, Hamann J, Grabowskit NT, Singh KB. Variation in the composition of selected milk fraction samples from healthy and mastitic quarters, and its significance for mastitis diagnosis. J Dairy Res. 2005;72:144–52.
Article
CAS
PubMed
Google Scholar
National Mastitis Council. Laboratory Handbook on Bovine Mastitis. Madison: National Mastitis Council Inc.; 1999.
Google Scholar
Oliver SP, González RN, Hogan JS, Jayarao BM, Owens WE. Microbiological procedures for the diagnosis of bovine udder infection and determination of milk quality. 4th ed. Verona: National Mastitis Council; 2004. p. 47.
Google Scholar
Lima ES, Blagitz MG, Batista CF, Alves AJ, Fernandes ACC, Ramos Sanchez EM, Torres HF, Diniz AS, Silva MX, Della Libera AMMP, Souza FN. Milk macrophages function in bovine leukemia virus-infected dairy cows. Front Vet Sci. 2021;8:650021.
Hasui M, Hirabayashi Y, Kobayashi Y. Simultaneous measurement by flow cytometry of phagocytosis and hydrogen peroxide production of neutrophils in while blood. J Immunol Methods. 1989;117:53–8.
Article
CAS
PubMed
Google Scholar
Della Libera AM, de Souza FN, Batista CF, Santos BP, de Azevedo LF, Sanchez EM, Diniz SA, Silva MX, Haddad JP, Blagitz MG. Effects of bovine leukemia virus infection on milk neutrophil function and milk lymphocyte profile. Vet Res. 2015;46:1–8.
Article
CAS
Google Scholar
Shehat MG, Tigno-Aranjuez J. Flow Cytometric Measurement of ROS production in macrophages in response to FcγR cross-linking. J Vis Exp. 2019;145:1–15.
Google Scholar
Batista CF, Souza FN, Santos KR, Ramos Sanchez EM, Reis LC, Bertagnon HG, et al. R-Phycoerythrin-labeled Mannheimia haemolytica for the simultaneous measurement of phagocytosis and intracellular reactive oxygen species production in bovine blood and bronchoalveolar lavage cells. Vet Immunol Immunopathol. 2018;196:53–9.
Article
CAS
PubMed
Google Scholar
McGraw KO, Wong SP. Forming Inferences about some intraclass correlation coefficients. Psych Metho. 1996;1:30–46.
Article
Google Scholar