Yan W, Wistuba II, Emmert-Buck MR, Erickson HS. Squamous cell carcinoma–similarities and differences among anatomical sites. Am J Cancer Res. 2011;1(3):275.
PubMed
Google Scholar
Thomson M. Squamous cell carcinoma of the nasal planum in cats and dogs. Clin Tech Small Anim Pract. 2007;22(2):42–5.
Article
Google Scholar
Tsujita H, Plummer CE. Bovine ocular squamous cell carcinoma. Vet Clin North Am Food Anim Pract. 2010;26(3):511–29.
Article
Google Scholar
Joshi B, Soni P, Fefar D, Ghodasara D, Prajapati K. Epidemiological and pathological aspects of horn cancer in cattle of Gujarat. Indian J Field Veterinar. 2009;5(2):15–8.
Google Scholar
Jakhesara SJ, Koringa PG, Nathani NM, Joshi CG. Identification and quantification of novel RNA isoforms in horn cancer of Bos indicus by comprehensive RNA-Seq. 3 Biotech. 2016;6(2):259.
Article
Google Scholar
Singh S, Singh G. Important aspects of horn cancer. Indian Cow: Scientific Econ J. 2005;2(6):32–9.
Google Scholar
Koringa PG, Jakhesara SJ, Rank DN, Joshi CG. Identification of novel SNPs in differentially expressed genes and its association with horn cancer of Bos indicus bullocks by next-generation sequencing. 3 Biotech. 2016;6(1):38.
Article
CAS
Google Scholar
Naik S, Randelia H, Dabholkar R. Carcinoma of the horn in a Cryptorchid bull. Pathol Vet. 1970;7(3):265–9.
CAS
PubMed
Google Scholar
Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet. 2017;18(1):14.
Article
Google Scholar
Jakhesara SJ, Koringa PG, Joshi CG. Identification of novel exons and transcripts by comprehensive RNA-Seq of horn cancer transcriptome in Bos indicus. J Biotechnol. 2013;165(1):37–44.
Article
CAS
Google Scholar
Koringa PG, Jakhesara SJ, Bhatt VD, Meshram CP, Patel AK, Fefar DT, et al. Comprehensive transcriptome profiling of squamous cell carcinoma of horn in Bos indicus. Vet Comp Oncol. 2016;14(2):122–36.
Article
CAS
Google Scholar
Koringa PG, Jakhesara SJ, Bhatt VD, Patel AB, Dash D, Joshi CG. Transcriptome analysis and SNP identification in SCC of horn in (Bos indicus) Indian cattle. Gene. 2013;530(1):119–26.
Article
CAS
Google Scholar
Patel AK, Bhatt VD, Tripathi AK, Sajnani MR, Jakhesara SJ, Koringa PG, et al. Identification of novel splice variants in horn cancer by RNA-Seq analysis in zebu cattle. Genomics. 2013;101(1):57–63.
Article
CAS
Google Scholar
Tripathi AK, Koringa PG, Jakhesara SJ, Ahir VB, Ramani UV, Bhatt VD, et al. A preliminary sketch of horn cancer transcriptome in Indian zebu cattle. Gene. 2012;493(1):124–31.
Article
CAS
Google Scholar
Menon R, Patel AB, Joshi C. Comparative analysis of SNP candidates in disparate milk yielding river buffaloes using targeted sequencing. PeerJ. 2016;4:e2147.
Article
Google Scholar
Patel A, Subramanian R, Padh H, Shah T, Mohapatra A, Reddy B, et al. Identification of single nucleotide polymorphism from Indian Bubalus bubalis through targeted sequence capture. Curr Sci. 2017;112(6):1230.
Article
CAS
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Google Scholar
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27(6):863–4.
Article
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
Google Scholar
Garrison, E. and Marth, G. Haplotype-based variant detection from short-read sequencing. 2012;9. Preprint at https://arxiv.org/abs/1207.3907.
Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92.
Article
CAS
Google Scholar
de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006;34(Web Server issue):W362–5.
Article
Google Scholar
Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31(16):2745–7.
Article
CAS
Google Scholar
Zhao X, Ayer RE, Davis SL, Ames SJ, Florence B, Torchinsky C, et al. Apoptosis factor EI24/PIG8 is a novel endoplasmic reticulum-localized Bcl-2-binding protein which is associated with suppression of breast cancer invasiveness. Cancer Res. 2005;65(6):2125–9.
Article
CAS
Google Scholar
Gu Z, Gilbert DJ, Valentine VA, Jenkins NA, Copeland NG, Zambetti GP. The p53-inducible gene EI24/PIG8 localizes to human chromosome 11q23 and the proximal region of mouse chromosome 9. Cytogenet Cell Genet. 2000;89(3–4):230–3.
Article
CAS
Google Scholar
Murakami Y, Nobukuni T, Tamura K, Maruyama T, Sekiya T, Arai Y, et al. Localization of tumor suppressor activity important in nonsmall cell lung carcinoma on chromosome 11q. Proc Natl Acad Sci U S A. 1998;95(14):8153–8.
Article
CAS
Google Scholar
Gentile M, Ahnstrom M, Schon F, Wingren S. Candidate tumour suppressor genes at 11q23-q24 in breast cancer: evidence of alterations in PIG8, a gene involved in p53-induced apoptosis. Oncogene. 2001;20(53):7753–60.
Article
CAS
Google Scholar
Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013;1833(12):3460–70.
Article
CAS
Google Scholar
Zhan Q, Lord KA, Alamo I Jr, Hollander MC, Carrier F, Ron D, et al. The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol. 1994;14(4):2361–71.
Article
CAS
Google Scholar
Schwerk C, Prasad J, Degenhardt K, Erdjument-Bromage H, White E, Tempst P, et al. ASAP, a novel protein complex involved in RNA processing and apoptosis. Mol Cell Biol. 2003;23(8):2981–90.
Article
CAS
Google Scholar
Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, et al. New consensus nomenclature for mammalian keratins. J Cell Biol. 2006;174(2):169–74.
Article
CAS
Google Scholar
Marceau N, Schutte B, Gilbert S, Loranger A, Henfling ME, Broers JL, et al. Dual roles of intermediate filaments in apoptosis. Exp Cell Res. 2007;313(10):2265–81.
Article
CAS
Google Scholar
Oshima RG. Apoptosis and keratin intermediate filaments. Cell Death Differ. 2002;9(5):486–92.
Article
CAS
Google Scholar
Gilbert S, Ruel A, Loranger A, Marceau N. Switch in Fas-activated death signaling pathway as result of keratin 8/18-intermediate filament loss. Apoptosis. 2008;13(12):1479–93.
Article
CAS
Google Scholar
Ku NO, Strnad P, Zhong BH, Tao GZ, Omary MB. Keratins let liver live: mutations predispose to liver disease and crosslinking generates Mallory-Denk bodies. Hepatology. 2007;46(5):1639–49.
Article
CAS
Google Scholar
Marceau N, Loranger A, Gilbert S, Daigle N, Champetier S. Keratin-mediated resistance to stress and apoptosis in simple epithelial cells in relation to health and disease. Biochem Cell Biol. 2001;79(5):543–55.
Article
CAS
Google Scholar