Abdalla MA, Abdalla O. Morphometric observations on the kidney of the camel. Camelus dromedaries J Anat. 1979;129(1):45–50.
CAS
PubMed
Google Scholar
Adem A, Haj MA, Sheela B, Pathan JY, et al. ANP and BNP responses to dehydration in the one-humped camel and effects of blocking renin-angiotensin system. PLoS ONE. 2013;8(3):e57806.
Article
CAS
Google Scholar
Alano CC, Ying W, Swanson RA. Poly (ADP-ribose) polymerase-1-mediated cell death inastrocytes requires NAD+ depletion and mitochondrial permeability transition. J Biol Chem. 2004;279(18):18895–902 (PubMed:14960594).
AlHaj M, Kazzam E, Nagelkerke NJ, Nyberg F, Nicholls MG, Adem A. Effect of dehydration in the presence and absence of the Angiotensin receptor blocker Losartan on blood constituents in the camel. Journal of Medical Sciences. 2011;4:1–6.
Article
Google Scholar
Ali MA, Kazzam E, Naheed Amir, Nyberg F, Adem A, 2013 Effects of dehydration and blockade of Angiotensin 11 AT1 receptor on stress hormones and anti-oxidants in the one-humped camel BMC Veterinary Research 9 232 http://www.biomedcentral.com/1746-6148/9/232.
Ali MA, Abu Damir H, Amir N, Adeghate EA, Bastaki S, Murphy D, Adem A. Effects of long-term dehydration on oxidative stress, apoptotic markers and neuropeptides in the gastric mucosa of the dromedary camel. Mol Cell Biochem. 2018. https://doi.org/10.1007/s11010-018-3474-x.
Article
PubMed
Google Scholar
Ayala A, Muñoz MF, Argüelles S. “Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal,.” Oxidative Medicine and Cellular Longevity. 2014;2014(360438):31.
Beniwal G, Singh K, Joshi S. Histomorphological study of juxtaglomerular apparatus, macula densa, Becher’s cells, polkissen cells and stellate veins of kidney in camel, (Camelus dromedarius). Indian Veterinary Medical Journal. 1997;21(1):23–5.
Google Scholar
Beniwal G, Singh K, Joshi S. Microscopic study of uriniferous tubules and collecting ducts of kidney in camel (Camelus dromedarius). Journal of Camel Practice and Research. 1998;5(1):107–9.
Google Scholar
Bensaad K, Vousden KH. p53: new roles in metabolism. Trends Cell Biol. 2007;17:286–91.
Article
CAS
Google Scholar
Boise LH, Gonzalez-Garcia M, Postema CE, et al. Bcl-x, A Bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993;74(4):597–608.
Article
CAS
Google Scholar
Bouby N, Fernandes S. Mild dehydration, vasopressin and the kidney: animal and human studies. Eur J Clin Nutr. 2003;57(Suppl 2):S39–46.
Article
CAS
Google Scholar
Burg MB, Ferraris JD, Dmitrieva NI. Cellular response to hyperosmotic stresses. Physiol Rev. 2007;87(4):1441–74.
Article
CAS
Google Scholar
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.
Article
CAS
Google Scholar
Cadenas E, Mechanisms of oxygen activation and reactive oxygen species detoxification, in Oxidative stress and antioxidant defenses in biology. 1995, Springer. p. 1–61.
Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR. Cell biology: PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science. 2005;309(5741):1732–5.
Article
CAS
Google Scholar
Cipriani G, Rapizzi E, Vannacci A, Rizzuto R, Moroni F, Chiarugi A. Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction. J Biol Chem. 2005;280(17):17227–34.
Article
CAS
Google Scholar
Dejean LM, et al. Regulation of the mitochondrial apoptosis-induced channel, MAC, by BCL 2 family proteins. Biochim Biophys Acta. 2006;1762(2):191–201 ([PubMed: 15750180]).
Article
CAS
Google Scholar
Eissa L, Ali HA, Ismail HI. Histological and ultrastructural study on theJuxtaglomerular apparatus in the kidney of the dromedary camel (camelus dromedaries). Int J Curr Adv Res. 2017;6:6776–83.
Google Scholar
Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR. Bax-induced Caspase Activation and Apoptosis via Cytochrome c Release from Mitochondria Is Inhabitable by Bcl-xL. The Journal of Biological Chemistry. 1999;274:2225–33. https://doi.org/10.1074/jbc.274.4.2225.
Article
CAS
PubMed
Google Scholar
Franke EI, Vanderbrink BA, Hile KL, Zhang H, Cain A, et al. Renal IL-18 Production Is Macrophage Independent During Obstructive Injury. PLoS ONE. 2012;7(10):e47417. https://doi.org/10.1371/journal.pone.0047417.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gebreyohanes MG, Assen AM. Adaptation Mechanisms of Camels (Camelus dromedarius) for Desert Environment A Review. J Vet Sci Technol. 2017;8:6. https://doi.org/10.4172/2157-7579.1000486.
Article
Google Scholar
Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, et al. Caspase-1 processes IFN-gamma- inducing factor and regulates LPS-induced IFN-gamma production. Nature. 1997;386:619–23.
Article
CAS
Google Scholar
Gholami K, Loh SY, Salleh N, Lam SK, Hoe SZ. Selection of suitable endogenous reference genes for qPCR in kidney and hypothalamus of rats under testosterone influence. PLoS ONE. 2017;12(6):e0176368.
Article
Google Scholar
Hermes-Lima, M., J.M. Storey, and K.B. Storey, Antioxidant defenses and animal adaptation to oxygen availability during environmental stress, in Cell and Molecular Response to Stress. 2001, Elsevier. p. 263–287.
Hilliard LM, Mirabito Colafella KM, Bulmer LL, Puelles VG, Singh RR, Ow CPC, Gaspari T, Drummond GR, Evans RG, Vinh A, Denton KM. Chronic recurrent dehydration associated with periodic water intake exacerbates hypertension and promotes renal damage in male spontaneously hypertensive rats Scientific Reports. 2016;6:33855. https://doi.org/10.1038/srep33655.
Article
CAS
PubMed
Google Scholar
Lee Jae-Kwon Kim Soo-Hyun Eli C Lewis Tania Azam Leonid L Reznikov Charles A Dinarello Differences in signaling pathways by IL-1β and IL-18. PNAS June 8, 2004 2004 101 23 88158820.
Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology. Pharmacol Rev. 2016;68:49–75. https://doi.org/10.1124/pr.115.011106.
Article
CAS
PubMed
Google Scholar
Kiraz Y, Adan A, Kartal Yandim M, Baran Y. Major apoptotic mechanisms and genesinvolved in apoptosis. Tumor Biol. 2016;37:8471–86. https://doi.org/10.1007/s13277-016-5035-9.
Article
CAS
Google Scholar
Kohler-Rollefson I, Mundy P. Mathias I. Virginia: A Field Manual of Camel Diseases; 2001.
Google Scholar
Kumar A and Tyagi MG. Hypertonicity induced modulation of gene transcription and translation of water regulatory molecules. Biomed Res. 2011;22(1):93–101.
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (delta C (T)) method. Methods. 2001;25:402–8.
Article
CAS
Google Scholar
Liu Y, Beyer A, Aebersold R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell. 2016;165(3):535–50.
Article
CAS
Google Scholar
Liu Z, Wang H, Xiao W, Wang C, Liu G, Hong T. Thyrocyte interleukin-18 expression is up regulated by interferon-c and may contribute to thyroid destruction in Hashimoto’s thyroiditis. Int J Exp Path. 2010;91:420–5.
Article
CAS
Google Scholar
MacManes M. Severe acute dehydration in a desert rodent elicits a transcriptional response that effectively prevents kidney injury. BioRxiv 2017 10.1101/103077.
Marieb Elaine Nicpon, Hoehn Katja "Chapter 16" Human anatomy & physiology 9 Boston Pearson 2013 629 Question 14. OCLC 777127809.
Mbassa GK. Mammalian renal modifications in dry environments. Vet Res Commun. 1988;12(1):1–18.
Article
CAS
Google Scholar
Michels J, Kepp O, Senovilla L, Lissa D, Castedo M, Kroemer G, Galluzzi L 2013 Functions of BCL-XL at the Interface between Cell Death and Metabolism International Journal of Cell Biology 2013 doi.org/10.1155/2013/705294.
Morales JC, Li L, Fattah FJ, Dong Y, Bey EA, Patel M, Gao J, Boothman DA. Review of Poly (ADP-ribose) Polymerase (PARP) Mechanisms of Action and Rationale for Targeting in Cancer and Other Diseases. Crit Rev Eukaryot Gene Expr. 2014;24:15–28.
Article
CAS
Google Scholar
Olivier M, Petitjean A, Marcel V, Petre A, Mounawar M, Plymoth A, de Fromentel CC. Hainaut P (2009) Review: Recent advances in p53 research: an interdisciplinary perspective. Cancer Gene Ther. 2009;16:1–12.
Article
CAS
Google Scholar
Paik IY, Jeong MH, Jin HE, Kim YI, Suh AR, Cho SY, Roh HT, Jin CH, Fluid Suh SH. replacement following dehydration reduces oxidative stress during recovery. Biochem Biophys Res Comm. 2009;22:103–7.
Article
Google Scholar
Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL. Urinary interleukin-18 is a marker ofhuman acute tubular necrosis. Am J Kidney Dis. 2004;43:405–14 ([PubMed]).
Article
CAS
Google Scholar
Parikh et al. Urine IL-18 is an early diagnostic markerfor acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol. 2005;16:3046–52.
Peraza S, Wesseling C, Aragon A, et al. Decreased kidney function among agricultural workers in El Salvador. Am J Kidney Dis. 2012;59:531–40.
Article
Google Scholar
Pfaffl MW. Quantification strategies in real-time PCR. The Real-Time PCR Encyclopedia A-Z of quantitative Safer, A.M., and Abo-Salem, K.S., (1991): Ultrastructure of the nephron of the young camel (Camelus dromedarius). J Morphol. 2004;210:101–15.
Google Scholar
Prasad M, Walker AN, Kaur J, Thomas JL, Powell SA, Pandey AV, Whittal RM, Burak WE, Petruzzelli G, Bose HS. Endoplasmic reticulum stress enhances mitochondrial metabolic activity in mammalian adrenals and gonads. Mol Cell Biol. 2016;36:3058–74. https://doi.org/10.1128/MCB.00411-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Safer AM, Abo-Salem KS. Ultrastructure of the nephron of the young camel (Camelus dromedarius). J Morphol. 1991;210:101–15.
Article
CAS
Google Scholar
Schoorlemmer GHM, Evered MD. Reduced feeding during water deprivation depends on hydration of the gut. Am J Physiol Regulatory Integr Comp Physiology. 2002;283(5):R1061–9.
Article
Google Scholar
Schroter RC, Robertshaw D, Baker MA, Shoemaker VH, Holmes R, Schmidt-Nielsen K. Respiration in heat stressed camels. Respir Physiol. 1987;70:97–112.
Article
CAS
Google Scholar
Shen Y, White E. p53-dependent apoptosis pathways. Adv Cancer Res. 2001;82:55–84.
Article
CAS
Google Scholar
Shui HA, Ka SM, Wu WM, Lin YF, Hou YC, Su LC, Chen A. LPS-evoked IL-18 expressionin mesangial cells plays a role in accelerating lupus nephritis. Rheumatology (Oxford). 2007;46:1277–84 ([PubMed]).
Article
CAS
Google Scholar
Stagos D, Goutzourelas N, Bar-Or D, Amalia-Maria N, Bella E, Becker AT, Statiri A, Kafantaris I, Kouretas D. Application of a new oxidation-reduction potential assessment method in strenuous exercise-induced oxidative stress. Redox Rep. 2015;20(4):154–62. https://doi.org/10.1179/1351000214Y.0000000118.
Article
CAS
PubMed
Google Scholar
Sutinen EM, Pirttilä T, Anderson G, Salminen A, Ojala JO. Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflammation. 2012;9:199.
Article
CAS
Google Scholar
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B. 2007;39:44–84.
Article
CAS
Google Scholar
Verlander JW. Normal Ultrastructure of the Kidney and Lower Urinary Tract. Toxicol Pathol. 1998;26:1–17.
Article
CAS
Google Scholar
Wijkstrom J, Leiva R, Elinder CG, et al. Clinical and pathological characterization of Mesoamerican nephropathy: a new kidney disease in Central America. Am J Kidney Dis. 2013;62:908–18.
Article
Google Scholar
Wu et al. IL-18 contributes to renal damage after ischemia-reperfusion. Journal of the American Society of Nephrology: JASN. 2008;19(12):2331–41.
Wyburn K, Wu H, Yin J, Jose M, Eris J, Chadban S. Macrophage-derived interleukin-18in experimental renal allograft rejection. Nephrol Dial Transplant. 2005;20:699–706 ([PubMed]).
Article
CAS
Google Scholar
Yuan J, Najafov A, Py BF. Roles of Caspases in Necrotic Cell Death. Cell. 2016;167(7):1693–704.
Article
CAS
Google Scholar