McFarlane D, Dybdal N, Donaldson MT, Miller L, Cribb AE. Nitration and increased alpha-synuclein expression associated with dopaminergic neurodegeneration in equine pituitary pars intermedia dysfunction. J Neuroendocrinol. 2005;17:73–80.
Article
CAS
PubMed
Google Scholar
Brosnahan MM, Paradis MR. Demographic and clinical characteristics of geriatric horses: 467 cases (1989–1999). J Am Vet Med Assoc. 2003;223:93–8.
Article
PubMed
Google Scholar
Miller MA, Pardo ID, Jackson LP, Moore GE, Sojka JE. Correlation of pituitary histomorphometry with adrenocorticotrophic hormone response to domperidone administration in the diagnosis of equine pituitary pars intermedia dysfunction. Vet Pathol. 2008;45:26–38.
Article
CAS
PubMed
Google Scholar
Schott HC 2. Pituitary pars intermedia dysfunction: equine Cushing’s disease. Vet Clin North Am Equine Pract. 2002;18:237–70. nd. .
Innera M, Petersen AD, Desjardins DR, Steficek BA, Rosser EJ Jr, Schott HC 2nd. Comparison of hair follicle histology between horses with pituitary pars intermedia dysfunction and excessive hair growth and normal aged horses. Vet Dermatol. 2013;24:212–217 e246-217.
Google Scholar
van der Kolk JH, Kalsbeek HC, van Garderen E, Wensing T, Breukink HJ. Equine pituitary neoplasia: a clinical report of 21 cases (1990–1992). Vet Rec. 1993;133:594–7.
PubMed
Google Scholar
Hillyer MH, Taylor FGRT, Mair TS, Murphy D, Watson TDG, Love S. Diagnosis of hyperadrenocorticism in the horse. Equine Vet Edu. 1992;4:131–4.
Article
Google Scholar
Couetil L, Paradis MR, Knoll J. Plasma adrenocorticotropin concentration in healthy horses and in horses with clinical signs of hyperadrenocorticism. J Vet Intern Med. 1996;10:1–6.
Article
CAS
PubMed
Google Scholar
Heinrichs M, Baumgartner W, Capen CC. Immunocytochemical demonstration of proopiomelanocortin-derived peptides in pituitary adenomas of the pars intermedia in horses. Vet Pathol. 1990;27:419–25.
Article
CAS
PubMed
Google Scholar
Spelta CW. Equine pituitary pars intermedia dysfunction: current perspectives on diagnosis and management. Vet Med (Auckl). 2015;6:293–300.
Google Scholar
Kemppainen RJ, Peterson ME. Regulation of alpha-melanocyte-stimulating hormone secretion from the pars intermedia of domestic cats. Am J Vet Res. 1999;60:245–9.
CAS
PubMed
Google Scholar
Kemppainen RJ, Zerbe CA, Sartin JL. Regulation and secretion of proopiomelanocortin peptides from isolated perifused dog pituitary pars intermedia cells. Endocrinology. 1989;124:2208–17.
Article
CAS
PubMed
Google Scholar
Dybdal NO, Hargreaves KM, Madigan JE, Gribble DH, Kennedy PC, Stabenfeldt GH. Diagnostic testing for pituitary pars intermedia dysfunction in horses. J Am Vet Med Assoc. 1994;204:627–32.
CAS
PubMed
Google Scholar
Morgan RA, Keen JA, Homer N, Nixon M, McKinnon-Garvin AM, Moses-Williams JA, Davis SR, Hadoke PWF, Walker BR. Dysregulation of Cortisol Metabolism in Equine Pituitary Pars Intermedia Dysfunction. Endocrinology. 2018;159:3791–800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luppi PH, Sakai K, Salvert D, Berod A, Jouvet M. Periventricular dopaminergic neurons terminating in the neuro-intermediate lobe of the cat hypophysis. J Comp Neurol. 1986;244:204–12.
Article
CAS
PubMed
Google Scholar
Goudreau JL, Falls WM, Lookingland KJ, Moore KE. Periventricular-hypophysial dopaminergic neurons innervate the intermediate but not the neural lobe of the rat pituitary gland. Neuroendocrinology. 1995;62:147–54.
Article
CAS
PubMed
Google Scholar
McFarlane D, Cribb AE. Systemic and pituitary pars intermedia antioxidant capacity associated with pars intermedia oxidative stress and dysfunction in horses. Am J Vet Res. 2005;66:2065–72.
Article
CAS
PubMed
Google Scholar
Millington WR, Dybdal NO, Dawson R Jr, Manzini C, Mueller GP. Equine Cushing’s disease: differential regulation of beta-endorphin processing in tumors of the intermediate pituitary. Endocrinology. 1988;123:1598–604.
Article
CAS
PubMed
Google Scholar
Saiardi A, Borrelli E. Absence of dopaminergic control on melanotrophs leads to Cushing’s-like syndrome in mice. Mol Endocrinol. 1998;12:1133–9.
CAS
PubMed
Google Scholar
Calabrese V, Bates TE, Stella AM. NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance. Neurochem Res. 2000;25:1315–41.
Article
CAS
PubMed
Google Scholar
Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology. 2001;40:959–75.
Article
CAS
PubMed
Google Scholar
Luo Y, Roth GS. The roles of dopamine oxidative stress and dopamine receptor signaling in aging and age-related neurodegeneration. Antioxid Redox Signal. 2000;2:449–60.
Article
CAS
PubMed
Google Scholar
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.
Article
CAS
PubMed
Google Scholar
Lee PC, Bordelon Y, Bronstein J, Sinsheimer JS, Farrer M, Ritz B. Head injury, alpha-synuclein genetic variability and Parkinson’s disease. Eur J Neurol. 2015;22:874–8.
Article
CAS
PubMed
Google Scholar
Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.
Article
CAS
PubMed
Google Scholar
Saha AR, Ninkina NN, Hanger DP, Anderton BH, Davies AM, Buchman VL. Induction of neuronal death by alpha-synuclein. Eur J Neurosci. 2000;12:3073–7.
Article
CAS
PubMed
Google Scholar
Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000;290:985–9.
Article
CAS
PubMed
Google Scholar
Nagatsu T, Nakashima A, Ichinose H, Kobayashi K. Human tyrosine hydroxylase in Parkinson’s disease and in related disorders. J Neural Transm (Vienna). 2019;126:397–409.
Article
CAS
Google Scholar
Silva MA, Mattern C, Hacker R, Tomaz C, Huston JP, Schwarting RK. Increased neostriatal dopamine activity after intraperitoneal or intranasal administration of L-DOPA: on the role of benserazide pretreatment. Synapse. 1997;27:294–302.
Article
CAS
PubMed
Google Scholar
Sweet RD, McDowell FH. Five years’ treatment of Parkinson’s disease with levodopa. Therapeutic results and survival of 100 patients. Ann Intern Med. 1975;83:456–63.
Article
CAS
PubMed
Google Scholar
Lesser RP, Fahn S, Snider SR, Cote LJ, Isgreen WP, Barrett RE. Analysis of the clinical problems in parkinsonism and the complications of long-term levodopa therapy. Neurology. 1979;29:1253–60.
Article
CAS
PubMed
Google Scholar
Block G, Liss C, Reines S, Irr J, Nibbelink D. Comparison of immediate-release and controlled release carbidopa/levodopa in Parkinson’s disease. A multicenter 5-year study. The CR First Study Group. Eur Neurol. 1997;37:23–7.
Article
CAS
PubMed
Google Scholar
Melamed E, Offen D, Shirvan A, Djaldetti R, Barzilai A, Ziv I. Levodopa toxicity and apoptosis. Ann Neurol. 1998;44:149–54.
Article
Google Scholar
Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992;59:1609–23.
Article
CAS
PubMed
Google Scholar
Rajput AH, Fenton M, Birdi S, Macaulay R. Is levodopa toxic to human substantia nigra? Mov Disord. 1997;12:634–8.
Article
CAS
PubMed
Google Scholar
Quinn N. Drug treatment of Parkinson’s disease. BMJ. 1995;310:575–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uitti RJ, Ahlskog JE. Comparative Review of Dopamine Receptor Agonists in Parkinson’s Disease. CNS Drugs. 1996;5:369–88.
Article
CAS
PubMed
Google Scholar
Fischer PA. Treatment strategies in Parkinson’s disease after a quarter century experiences with L-DOPA therapy. J Neural Transm Suppl. 1995;46:381–9.
CAS
PubMed
Google Scholar
Oertel WH, Quinn NP. Parkinson’s disease: drug therapy. Baillieres Clin Neurol. 1997;6:89–108.
CAS
PubMed
Google Scholar
Rascol O, Brooks DJ, Brunt ER, Korczyn AD, Poewe WH, Stocchi F. Ropinirole in the treatment of early Parkinson’s disease: a 6-month interim report of a 5-year levodopa-controlled study. 056 Study Group. Mov Disord. 1998;13:39–45.
Article
CAS
PubMed
Google Scholar
Boas JWP J, Dupont E, Mikkelsen B, Wermuth L. The levodopa dose-sparing capacity of pergolide compared with that of bromocriptine in an open‐label, crossover study. Eur J Neurol. 1996;3:44–9.
Article
Google Scholar
Pezzoli G, Martignoni E, Pacchetti C, Angeleri VA, Lamberti P, Muratorio A, Bonuccelli U, De Mari M, Foschi N, Cossutta E, et al. Pergolide compared with bromocriptine in Parkinson’s disease: a multicenter, crossover, controlled study. Mov Disord. 1994;9:431–6.
Article
CAS
PubMed
Google Scholar
Bonnet AM, Serre I, Marconi R, Agid Y, Dubois B. A “combined” levodopa test as a useful method for evaluating the efficacy of dopamine agonists: application to pergolide and bromocriptine. Mov Disord. 1995;10:668–71.
Article
CAS
PubMed
Google Scholar
Donaldson MT, LaMonte BH, Morresey P, Smith G, Beech J. Treatment with pergolide or cyproheptadine of pituitary pars intermedia dysfunction (equine Cushing’s disease). J Vet Intern Med. 2002;16:742–6.
PubMed
Google Scholar
Wang Y, Sung CC, Chung KK. Novel enhancement mechanism of tyrosine hydroxylase enzymatic activity by nitric oxide through S-nitrosylation. Sci Rep. 2017;7:44154.
Article
CAS
PubMed
PubMed Central
Google Scholar
McFarlane D. Equine pituitary pars intermedia dysfunction. Vet Clin North Am Equine Pract. 2011;27:93–113.
Article
PubMed
Google Scholar
McFarlane D, Banse H, Knych HK, Maxwell LK. Pharmacokinetic and pharmacodynamic properties of pergolide mesylate following long-term administration to horses with pituitary pars intermedia dysfunction. J Vet Pharmacol Ther. 2017;40:158–64.
Article
CAS
PubMed
Google Scholar
Durham AE. Therapeutics for Equine Endocrine Disorders. Vet Clin North Am Equine Pract. 2017;33:127–39.
Article
PubMed
Google Scholar
Gehlert DR, Bishop JF, Schafer MP, Chronwall BM. Rat intermediate lobe in culture: dopaminergic regulation of POMC biosynthesis and cell proliferation. Peptides. 1988;9(Suppl 1):161–8.
Article
PubMed
Google Scholar
McFarlane D. Pathophysiology and clinical features of pituitary pars intermedia dysfunction. Veterinary Education. 2014;26:592–8.
Article
Google Scholar
Melrose PA, Walker RF, Douglas RH. Dopamine in the cerebrospinal fluid of prepubertal and adult horses. Brain Behav Evol. 1990;35:98–106.
Article
CAS
PubMed
Google Scholar
Fujisawa H, Okuno S. Regulatory mechanism of tyrosine hydroxylase activity. Biochem Biophys Res Commun. 2005;338:271–6.
Article
CAS
PubMed
Google Scholar
Booij J, de Bruin K, de Win MM, Lavini C, den Heeten GJ, Habraken JB. Imaging of striatal dopamine transporters in rat brain with single pinhole SPECT and co-aligned MRI is highly reproducible. Nucl Med Biol. 2003;30:643–9.
Article
CAS
PubMed
Google Scholar
Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, Halliday GM, Bartus RT. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain. 2013;136:2419–31.
Article
PubMed
PubMed Central
Google Scholar
Bankiewicz KS, Eberling JL, Kohutnicka M, Jagust W, Pivirotto P, Bringas J, Cunningham J, Budinger TF, Harvey-White J. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol. 2000;164:2–14.
Article
CAS
PubMed
Google Scholar
Pardridge WM. Tyrosine hydroxylase replacement in experimental Parkinson’s disease with transvascular gene therapy. NeuroRx. 2005;2:129–38.
Article
PubMed
PubMed Central
Google Scholar
Schott IIHC, Patterson JS, Howey EB, Benskey MJ, Goudreau JL, Lookingland KJ. Dopamine and tyrosine hydroxylase concentrations in pars intermedia tissue of horses with pituitary pars intermedia dysfunction with and without pergolide treatment. J Vet Intern Med. 2012;26(3):736.
Google Scholar