Martín-Fernández B, Gredilla R. Mitochondria and oxidative stress in heart aging. Age. 2016;38:225–38 https://doi.org/10.1007/s11357-016-9933-y.
PubMed
PubMed Central
Google Scholar
Yeum K-J, Russell RM, Krinsky NI, Aldini G. Biomarkers of antioxidant capacity in the hydrophilic and lipophilic compartments of human plasma. Arch Biochem Biophys. 2004;430:97–103 https://doi.org/10.1016/j.abb.2004.03.006.
CAS
PubMed
Google Scholar
Freeman LM, Rush JE, Milbury PE, Blumberg JB. Antioxidant status and biomarkers of oxidative stress in dogs with congestive heart failure. J Vet Intern Med. 2005;19:537–41 https://doi.org/10.1892/0891-6640(2005)19[537:asaboo]2.0.co;2.
PubMed
Google Scholar
Freeman LM, Rush JE, Markwell PJ. Effects of dietary modification in dogs with early chronic valvular disease. J Vet Intern Med. 2006;20:1116–26 https://doi.org/10.1892/0891-6640(2006)20[1116:eodmid]2.0.co;2.
PubMed
Google Scholar
Reimann MJ, Häggström J, Mortensen A, Lykkesfeldt J, Møller JE, Falk T, et al. Biopterin status in dogs with myxomatous mitral valve disease is associated with disease severity and cardiovascular risk factors. J Vet Intern Med. 2014;28:1520–6 https://dx.doi.org/10.1111%2Fjvim.12425.
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Heaney A, Langenfeld-McCoy N, Vester Boler B, Laflamme DP. Dietary intervention reduces left atrial enlargement in dogs with early preclinical myxomatous mitral valve disease: a blinded randomized controlled study in 36 dogs. BMC Vet Res. 2019;15:425 https://doi.org/10.1186/s12917-019-2169-1.
CAS
PubMed
PubMed Central
Google Scholar
Kevin LG, Novalija E, Riess ML, Camara AK, Rhodes SS, Stowe DF. Sevoflurane exposure generates superoxide but leads to decreased superoxide during ischemia and reperfusion in isolated hearts. Anesth Analg. 2003;96:949–55 https://doi.org/10.1213/01.ane.0000052515.25465.35.
CAS
PubMed
Google Scholar
Sleeper MM, Rosato BP, Bansal S, Avadhani NG. Mitochondrial dysfunction in myocardium obtained from clinically normal dogs, clinically normal anesthetized dogs, and dogs with dilated cardiomyopathy. Am J Vet Res. 2012;73:1759–64 https://doi.org/10.2460/ajvr.73.11.1759.
PubMed
Google Scholar
Kevin LG, Novalija E, Stowe DF. Reactive oxygen species as mediators of cardiac injury and protection: the relevance to anesthesia practice. Anesth Analg. 2005;101:1275–87 https://doi.org/10.1213/01.ane.0000180999.81013.d0.
PubMed
Google Scholar
Volti LG, Murabito P, Attaguile G, Rodella LF, Astuto M, Di Giacomo C, et al. Antioxidant properties of propofol: when oxidative stress sleeps with patients. EXCLI J. 2006;5:25–32.
Google Scholar
Murphy PG, Myers DS, Davies MJ, Webster NR, Jones JG. The antioxidant potential of propofol (2,6-diisopropyl-phenol). Br J Anaesthes. 1992;68:613–8 https://doi.org/10.1093/bja/68.6.613.
CAS
Google Scholar
Kharasch ED. Biotransformation of sevoflurane. Anesth Analg. 1995;81:27–3 https://doi.org/10.1097/00000539-199512001-000058.
Google Scholar
Sedlic F, Pravdic D, Ljubkovic M, Marinovic J, Stadnicka A, Bosnjak ZJ. Differences in production of reactive oxygen species and mitochondrial uncoupling as events in the preconditioning signaling cascade between desflurane and sevoflurane. Anesth Analg. 2009;109:405–11 https://dx.doi.org/10.1213%2Fane.0b013e3181a93ad9.
CAS
PubMed
PubMed Central
Google Scholar
Borgarelli M, Haggstrom J. Canine degenerative myxomatous mitral valve disease: natural history, clinical presentation and therapy. Vet Clin North Am Small Anim Pract. 2010;40:651–63 https://doi.org/10.1016/j.cvsm.2010.03.008.
PubMed
Google Scholar
Pereira Dos Santos JD. Cunha E, Nunes T, Tavares L, Oliveira M. relation between periodontal disease and systemic diseases in dogs. Res Vet Sci. 2019;125:136–40 https://doi.org/10.1016/j.rvsc.2019.06.007.
PubMed
Google Scholar
El-Bassiouni EA, Abo-Ollo MM, Helmy MH, Ismail S, Ramadan MI. Changes in the defense against free radicals in the liver and plasma of the dog during hypoxia and/or halothane anaesthesia. Toxicology. 1998;128:25–34 https://doi.org/10.1016/s0300-483x(98)00045-6.
CAS
PubMed
Google Scholar
Kovacic P, Somanathan R. Mechanism of anesthetic toxicity: metabolism, reactive oxygen species, oxidative stress, and electron transfer. ISRN Anesthesiol. 2011:1–10 https://doi.org/10.5402/2011/402906.
Lee JY. Oxidative stress due to anesthesia and surgical trauma and comparison of the effects of propofol and thiopental in dogs. J Vet Med Sci. 2012;74:663–5 https://doi.org/10.1292/jvms.11-0221.
CAS
PubMed
Google Scholar
Lee JY, Kim MC. Effect of propofol on oxidative stress status in erythrocytes from dogs under general anaesthesia. Acta Vet Scand. 2012;54:76 https://doi.org/10.1186/1751-0147-54-76.
CAS
PubMed
PubMed Central
Google Scholar
Tomsič K, Nemec Svete A, Nemec A, Domanjko Petrič A, Vovk T, Seliškar A. Influence of sevoflurane or propofol anaesthesia on oxidative stress parameters in dogs with early-stage myxomatous mitral valve degeneration. A preliminary study. Acta Vet-Beograd. 2018;68:32–42 https://doi.org/10.2478/acve-2018-0003.
Google Scholar
Hans P, Deby-Dupont G, Deby C, Pieron F, Verbesselt R, Franssen C, Lamy M. Increase in antioxidant capacity of plasma during propofol anesthesia. J Neurosurg Anesthesiol. 1997;9:234–6 https://doi.org/10.1097/00008506-199707000-00006.
CAS
PubMed
Google Scholar
Cinnella G, Vendemiale G, Dambrosio M, Serviddio G, Pugliese PL, Aspromonte G, et al. Effect of Propofol, Sevoflurane and Desflurane on systemic redox balance. Int J Immunopathol Pharmacol. 2007;20:585–93 https://doi.org/10.1177/039463200702000316.
CAS
PubMed
Google Scholar
Erbas M, Demiraran Y, Yildirim HA, Sezen G, Iskender A, Karagoz I, et al. Comparison of effects on the oxidant/antioxidant system of sevoflurane, desflurane and propofol infusion during general anesthesia. Rev Bras Anestesiol. 2015;65:68–72 https://doi.org/10.1016/j.bjane.2014.05.004.
PubMed
Google Scholar
Popov IN, Lewin G. Photochemiluminescent detection of antiradical activity; IV: testing of lipid-soluble antioxidants. J Biochem Biophys Methods. 1996;31:1–8 https://doi.org/10.1016/0165-022X(95)00021-I.
CAS
PubMed
Google Scholar
Popov I, Lewin G. Antioxidative homeostasis: characterization by means of chemiluminescent technique. Methods Enzymol. 1999;300:437–56 https://doi.org/10.1016/s0076-6879(99)00149-4.
CAS
PubMed
Google Scholar
Naziroǧlu M, Günay C. The levels of some antioxidant vitamins, glutathione peroxidase and lipoperoxidase during the anaesthesia of dogs. Cell Biochem Funct. 1999;17:207–12 https://doi.org/10.1002/(SICI)1099-0844(199909)17:3%3C207::AID-CBF830%3E3.0.CO;2-3.
PubMed
Google Scholar
Ceylan BG, Yilmaz F, Eroglu F, Yavuz L, Gulmen S, Vural H. Oxidant and antioxidant activities of different anesthetic techniques. Propofol versus desflurane. Saudi Med J. 2009;30:371–6.
PubMed
Google Scholar
Eroglu F, Yavuz L, Ceylan BG, Yilmaz F, Eroglu E, Delibas N, et al. New volatile anesthetic, desflurane, reduces vitamin E level in blood of operative patients via oxidative stress. Cell Biochem Funct. 2010;28:211–6 https://doi.org/10.1002/cbf.1641.
CAS
PubMed
Google Scholar
Braz MG, Braz LG, Freire CMM, Lucio LMC, Braz JRC, Tang G, et al. Isoflurane and propofol contribute to increasing the antioxidant status of patients during minor elective surgery: a randomized clinical study. Medicine (Baltimore). 2015;94(31):e1266 https://doi.org/10.1097/md.0000000000001266.
CAS
PubMed Central
Google Scholar
Cavalca V, Colli S, Veglia F, Eligini S, Zingaro L, Squellerio I, et al. Anesthetic propofol enhances plasma gamma-tocopherol levels in patients undergoing cardiac surgery. Anesthesiology. 2008;108:988–97 https://doi.org/10.1097/ALN.0b013e318173efb4.
CAS
PubMed
Google Scholar
Liebler DC. The role of metabolism in the antioxidant function of vitamin E. Crit Rev Toxicol. 1993;23:147–69 https://doi.org/10.3109/10408449309117115.
CAS
PubMed
Google Scholar
Palace VP, Hill MF, Farahmand F, Singal PK. Mobilization of antioxidant vitamin pools and hemodynamic function after myocardial infarction. Circulation. 1999;99:121–6 https://doi.org/10.1161/01.CIR.99.1.121.
CAS
PubMed
Google Scholar
Boisset S, Steghens J-P, Favetta P, Terreux R, Guitton J. Relative antioxidant capacities of propofol and its main metabolites. Arch Toxicol. 2004;78:635–42 https://doi.org/10.1007/s00204-004-0585-9.
CAS
PubMed
Google Scholar
Rigobello MP, Stevanato R, Momo F, Fabris S, Scutari G, Boscolo R, et al. Evaluation of the antioxidant properties of propofol and its nitrosoderivative. Comparison with homologue substituted phenols. Free Radic Res. 2004;38:315–21 https://doi.org/10.1080/03079450310001652031.
CAS
PubMed
Google Scholar
Vasileiou I, Xanthos T, Koudouna E, Perrea D, Klonaris C, Katsargyris A, et al. Propofol: a review of its non-anaesthetic effects. Eur J Pharmacol. 2009;605:1–8 https://doi.org/10.1016/j.ejphar.2009.01.007.
CAS
PubMed
Google Scholar
Stratford N, Murphy P. Antioxidant activity of propofol in blood from anaesthetized patients. Eur J Anaesthesiol. 1998;15:158–60 https://doi.org/10.1111/j.0265-0215.1998.00261.x.
CAS
PubMed
Google Scholar
Popov IN, Lewin G. Photochemiluminescent detection of antiradical activity: II. Testing of nonenzymic water-soluble antioxidants. Free Radic Biol Med. 1994;17:267–71 https://doi.org/10.1016/0891-5849(94)90082-5.
CAS
PubMed
Google Scholar
Popov IN, Lewin G. Antioxidative system of the organism and thermo-initiated chemiluminescence method for quantitative evaluation of its state. Biophysics. 2013;58:669–75 https://doi.org/10.1134/S0006350913050138.
CAS
Google Scholar
Popov I, Lewin G. Antioxidative homeostasis, its evaluation by means of chemiluminescent methods. In: Popov I, Lewin G, editors. Handbook of Chemiluminescent methods in oxidative stress assessment. Kerala: Transworld Research Network; 2008. p. 361–91.
Google Scholar
Waring WS, Webb DJ, Maxwell SRJ. Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers. J Cardiovasc Pharmacol. 2001;38:365–71 https://doi.org/10.1097/00005344-200109000-00005.
CAS
PubMed
Google Scholar
Glantzounis GK, Tsimoyiannis EC, Kappas AM, Galaris DA. Uric acid and oxidative stress. Curr Pharm Des. 2005;11:4145–51 https://doi.org/10.2174/138161205774913255.
CAS
PubMed
Google Scholar
Ghiselli A, Serafini M, Natella F, Scaccini C. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med. 2000;29:1106–14 https://doi.org/10.1016/s0891-5849(00)00394-4.
CAS
PubMed
Google Scholar
Onwuegbuzie AJ, Leech NL. Post hoc power: a concept whose time has come. Understand Stat. 2004;3:201–30 https://doi.org/10.1207/s15328031us0304_1.
Google Scholar
Yuan KH, Maxwell S. On the post hoc power in testing mean differences. J Educ Behav Stat. 2005;30:141–67 https://doi.org/10.3102%2F10769986030002141.
Google Scholar
Atkins C, Bonagura J, Ettinger S, Fox P, Gordon S, Haggstrom J, et al. Guidelines for the diagnosis and treatment of canine chronic valvular heart disease. J Vet Intern Med. 2009;23:1142–50 https://doi.org/10.1111/j.1939-1676.2009.0392.x.
CAS
PubMed
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team, R. nlme: linear and nonlinear mixed effects models 2015. R Package version 3.1–142 R package, 1–3. Available from: https://cran.r-project.org/web/packages/nlme/nlme.pdf.