Rosales C, Uribe-Querol E. Phagocytosis: a fundamental process in immunity. Biomed Res Int. 2017;9042851.
Thomas DC. The phagocyte respiratory burst: historical perspectives and recent advances. Immunol Lett. 2017;192:88–96.
CAS
PubMed
Google Scholar
Dahlgren C, Karlsson A. Respiratory burst in human neutrophils. J Immunol Methods. 1999;232:3–14.
CAS
PubMed
Google Scholar
Marnila P, Tiiska A, Lagerspetz K, Lilius EM. Phagocyte activity in the frog Rana temporaria: whole blood chemiluminescence method and the effects of temperature and thermal acclimation. Comp Biochem Phys A. 1995;111:609–14.
CAS
Google Scholar
Papežíková I, Mareš J, Vojtek L, Hyršl P, Marková Z, Šimková A, et al. Seasonal changes in immune parameters of rainbow trout (Oncorhynchus mykiss), brook trout (Salvelinus fontinalis) and brook trout × Arctic charr hybrids (Salvelinus fontinalis × Salvelinus alpinus alpinus). Fish Shellfish Immunol. 2016;57:400–5.
PubMed
Google Scholar
Lojek A, Ciz M, Marnila P, Duskova M, Lilius E-M. Measurement of whole blood phagocyte chemiluminescence in the Wistar rat. J Biolum Chemilum. 1997;12:225–31.
CAS
Google Scholar
Cichoń M, Chadzińska M, Książek A, Konarzewski M. Delayed effects of cold stress on immune response in laboratory mice. P Roy Soc B: Biol Sci. 2002;269:1493–7.
Google Scholar
Hawley DM, DuRant SE, Wilson AF, Adelman JS, Hopkins WA. Additive metabolic costs of thermoregulation and pathogen infection. Funct Ecol. 2012;26:701–10.
Google Scholar
Canale CI, Henry P-Y. Energetic costs of the immune response and torpor use in a primate. Funct Ecol. 2011;25:557–65.
Google Scholar
Field KA, Sewall BJ, Prokkola JM, Turner GG, Gagnon MF, Lilley TM, et al. Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats. Mol Ecol. 2018;27:3727–43.
CAS
Google Scholar
Mandl JN, Ahmed R, Barreiro LB, Daszak P, Epstein JH, Virgin HW, et al. Reservoir host immune responses to emerging zoonotic viruses. Cell. 2015;160:20–35.
CAS
PubMed
Google Scholar
Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, et al. Bat white-nose syndrome: an emerging fungal pathogen? Science. 2009;323:227.
CAS
PubMed
Google Scholar
Willis CKR. Trade-offs influencing the physiological ecology of hibernation in temperate-zone bats. Integr Comp Biol. 2017;57:1214–24.
PubMed
Google Scholar
Webb PI, Speakman JR, Racey PA. How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Can J Zool. 1996;74:761–5.
Google Scholar
Perry RW. A review of factors affecting cave climates for hibernating bats in temperate North America. Environ Rev. 2013;21:28–39.
Google Scholar
Boyer B, Barnes B. Molecular and metabolic aspects of mammalian hibernation expression of the hibernation phenotype results from the coordinated regulation of multiple physiological and molecular events during preparation for and entry into torpor. BioScience. 1999;49:713–24.
Google Scholar
Carey HV, Andrews MT, Martin SL. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev. 2003;83:1153–81.
CAS
PubMed
Google Scholar
Andrews MT. Advances in molecular biology of hibernation in mammals. Bioessays. 2007;29:431–40.
CAS
PubMed
Google Scholar
Xu Y, Shao C, Fedorov V, Goropashnaya A, Barnes B, Yan J. Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes. BMC Genomics. 2013;14:567.
PubMed
PubMed Central
Google Scholar
Dietz M, Kalko EK. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton's bats (Myotis daubentonii). J Comp Physiol B. 2006;176:223–31.
PubMed
Google Scholar
Wojciechowski MS, Jefimow M, Tegowska E. Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis). Comp Biochem Physiol A Mol Integr Physiol. 2007;147:828–40.
PubMed
Google Scholar
Bartonicka T, Bandouchova H, Berkova H, Blazek J, Lucan R, Horacek I, et al. Deeply torpid bats can change position without elevation of body temperature. J Therm Biol. 2017;63:119–23.
PubMed
Google Scholar
Roy VK, Krishna A. Changes in glucose and carnitine levels and their transporters in utero-tubal junction in relation to sperm storage in the vespertilionid bat, Scotophilus heathi. J Exp Zool Part A. 2013;319:517–26.
CAS
Google Scholar
Bandouchova H, Bartonička T, Berkova H, Brichta J, Kokurewicz T, Kovacova V, et al. Alterations in the health of hibernating bats under pathogen pressure. Sci Rep-UK. 2018;8:6067.
Google Scholar
Musacchia X, Volkert W. Blood gases in hibernating and active ground squirrels: HbO2 affinity at 6 and 38 C. Am J Phys. 1971;221:128–30.
CAS
Google Scholar
Geiser F. Hibernation: endotherms in eLS. Chichester: Wiley, Ltd; 2011. https://doi.org/10.1002/9780470015902.a0003215.pub2.
Book
Google Scholar
Bouma HR, Carey HV, Kroese FGM. Hibernation: the immune system at rest? J Leukoc Biol. 2010;88:619–24.
CAS
PubMed
Google Scholar
Bouma HR, Dugbartey GJ, Boerema AS, Talaei F, Herwig A, Goris M, et al. Reduction of body temperature governs neutrophil retention in hibernating and nonhibernating animals by margination. J Leukoc Biol. 2013;94:431–7.
CAS
PubMed
Google Scholar
Moore MS, Reichard JD, Murtha TD, Zahedi B, Fallier R, Kunz TH. Specific alterations in complement protein activity of little brown Myotis (Myotis lucifugus) hibernating in white-nose syndrome affected sites. PLoS One. 2011;6:e27430.
CAS
PubMed
PubMed Central
Google Scholar
Hecht AM, Braun BC, Krause E, Voigt CC, Greenwood AD, Czirják GÁ. Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis). Sci Rep UK. 2015;5:16604.
CAS
Google Scholar
Casadevall A, Pirofski L-A. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun. 1999;67:3703–13.
CAS
PubMed
PubMed Central
Google Scholar
Smith LM, May RC. Mechanisms of microbial escape from phagocyte killing. Biochem Soc T. 2013;41:475.
CAS
Google Scholar
Boratynski JS, Rusiński M, Kokurewicz T, Bereszyński A, Wojciechowski MS. Clustering behavior in wintering greater mouse-eared bats Myotis myotis - the effect of micro-environmental conditions. Acta Chiropterol. 2012;14:417–24.
Google Scholar
Ruczynski I, Bogdanowicz W. Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Bialowieza primeval forest, eastern Poland. J Mammal. 2005;86:921–30.
Google Scholar
Zukal J, Berková H, Řehák Z. Activity and shelter selection by Myotis myotis and Rhinolophus hipposideros hibernating in Kateřinská cave (Czech Republic). Mamm Biol. 2005;70:271–81.
Google Scholar
Kruger P, Saffarzadeh M, Weber ANR, Rieber N, Radsak M, von Bernuth H, et al. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog. 2015;11:e1004651.
PubMed
PubMed Central
Google Scholar
Pikula J, Amelon SK, Bandouchova H, Bartonička T, Berkova H, Brichta J, et al. White-nose syndrome pathology grading in Nearctic and Palearctic bats. PLoS One. 2017;12:e0180435.
PubMed
PubMed Central
Google Scholar
Maina JN, King AS. Correlations between structure and function in the design of the bat lung: a morphometric study. J Exp Biol. 1984;111:43–61.
CAS
PubMed
Google Scholar
Rodríguez-Durán A, Padilla-Rodríguez E. Blood characteristics, heart mass, and wing morphology of Antillean bats. Caribb J Sci. 2008;44:375–9.
Google Scholar
Glette J, Solberg CO, Lehmann V. Factors influencing human polymorphonuclear leukocyte chemiluminescence. Acta Pathol Microbiol Scandinavica C Immunol. 1982;90C:91–5.
Google Scholar
Winterbourn CC, Stern A. Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical. J Clin Invest. 1987;80:1486–91.
CAS
PubMed
PubMed Central
Google Scholar
Chapman ALP, Hampton MB, Senthilmohan R, Winterbourn CC, Kettle AJ. Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. J Biol Chem. 2002;277:9757–62.
CAS
PubMed
Google Scholar
Gaut JP, Yeh GC, Tran HD, Byun J, Henderson JP, Richter GM, et al. Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis. P Natl Acad Sci USA. 2001;98:11961.
CAS
Google Scholar
Cryan PM, Meteyer CU, Blehert DS, Lorch JM, Reeder DM, Turner GG, et al. Electrolyte depletion in white-nose syndrome bats. J Wildlife Dis. 2013;49:398–402.
CAS
Google Scholar
Voyles J, Berger L, Young S, Speare R, Webb R, Warner J, et al. Electrolyte depletion and osmotic imbalance in amphibians with chytridiomycosis. Dis Aquat Org. 2007;77:113–8.
CAS
PubMed
Google Scholar
Heard DJ, Huft VJ. The effects of short-term physical restraint and isoflurane anesthesia on hematology and plasma biochemistry in the island flying fox (Pteropus hypomelanus). J Zoo Wildl Med. 1998;29:14–7.
CAS
PubMed
Google Scholar
Strobel S, Becker NI, Encarnação JA. No short-term effect of handling and capture stress on immune responses of bats assessed by bacterial killing assay. Mamm Biol. 2015;80:312–5.
PubMed
PubMed Central
Google Scholar
Luis AD, Hudson PJ. Hibernation patterns in mammals: a role for bacterial growth? Funct Ecol. 2006;20:471–7.
Google Scholar
Martínková N, Pikula J, Zukal J, Kovacova V, Bandouchova H, Bartonička T, et al. Hibernation temperature-dependent Pseudogymnoascus destructans infection intensity in Palearctic bats. Virulence. 2018;9:1734–50.
Google Scholar
Martínková N, Škrabánek P, Pikula J. Modelling invasive pathogen load from non-destructive sampling data. J Theor Biol. 2019;464:98–103.
PubMed
Google Scholar
Bergman A, Casadevall A. Mammalian endothermy optimally restricts fungi and metabolic costs. mBio. 2010;1:e00212–0.
PubMed
PubMed Central
Google Scholar
Mayberry HW, McGuire LP, Willis CKR. Body temperatures of hibernating little brown bats reveal pronounced behavioural activity during deep torpor and suggest a fever response during white-nose syndrome. J Comp Physiol B. 2018;188:333–43.
CAS
PubMed
Google Scholar
Babior BM. Phagocytes and oxidative stress. Am J Med. 2000;109:33–44.
CAS
PubMed
Google Scholar
Costantini D, Møller AP. Does immune response cause oxidative stress in birds? A meta-analysis. Comp Biochem Phys A. 2009;153:339–44.
Google Scholar
Vitula F, Peckova L, Bandouchova H, Pohanka M, Novotny L, Jira D, et al. Mycoplasma gallisepticum infection in the grey partridge Perdix perdix: outbreak description, histopathology, biochemistry and antioxidant parameters. BMC Vet Res. 2011;7:12.
Google Scholar
Brook CE, Dobson AP. Bats as ‘special’ reservoirs for emerging zoonotic pathogens. Trends Microbiol. 2015;23:172–80.
CAS
PubMed
PubMed Central
Google Scholar
Wang L-F, Walker PJ, Poon LLM. Mass extinctions, biodiversity and mitochondrial function: are bats ‘special’ as reservoirs for emerging viruses? Curr Opin Virol. 2011;1:649–57.
CAS
PubMed
PubMed Central
Google Scholar
Mandl JN, Schneider C, Schneider SD, Baker ML. Going to bat(s) for studies of disease tolerance. Front Immunol. 2018;9:2112.
PubMed
PubMed Central
Google Scholar
Kacprzyk J, Hughes GM, Palsson-McDermott EM, Quinn SR, Puechmaille SJ, O'Neill LAJ, et al. A potent anti-inflammatory response in bat macrophages may be linked to extended longevity and viral tolerance. Acta Chiropterol. 2017;19:219–28.
Google Scholar
Zukal J, Bandouchova H, Brichta J, Cmokova A, Jaron KS, Kolarik M, et al. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci Rep UK. 2016;6:19829.
CAS
Google Scholar
Meteyer CU, Barber D, Mandl JN. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence. 2012;3:583–8.
PubMed
PubMed Central
Google Scholar
Flieger M, Bandouchova H, Cerny J, Chudíčková M, Kolarik M, Kovacova V, et al. Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection. Sci Rep UK. 2016;6:33200.
CAS
Google Scholar
Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defence strategy. Science. 2012;335:936–41.
CAS
PubMed
PubMed Central
Google Scholar
Becker DJ, Albery GF, Kessler MK, Lunn TJ, Falvo CA, Czirják GÁ, et al. Macroimmunology: the drivers and consequences of spatial patterns in wildlife immune defence. J Anim Ecol. 2020;00:1–24. https://doi.org/10.1111/1365-2656.13166.
Article
Google Scholar
Gaisler J, Hanák V, Hanzal V, Jarský V. Results of bat banding in the Czech and Slovak republics, 1948-2000. Vespertilio. 2003;7:3–61 (in Czech with English summary).
Google Scholar
Kokurewicz T, Apoznanski G, Gyselings R, Kirkpatrick L, de Bruyn L, Haddow J, et al. 45 years of bat study and conservation in Nietoperek bat reserve (Western Poland). Nyctalus. 2019;3:252–69.
Google Scholar
Strelkov PP. Migratory and stationary bats (Chiroptera) of the European part of the Soviet Union. Acta Zool Cracoviensia. 1969;14:93–439.
Google Scholar
Allen LC, Turmelle AS, Mendonça MT, Navara KJ, Kunz TH, McCracken GF, et al. Roosting ecology and variation in adaptive and innate immune system function in the Brazilian free-tailed bat (Tadarida brasiliensis). J Comp Physiol B. 2008;179:315–23.
PubMed
PubMed Central
Google Scholar
Linhart P, Bandouchova H, Zukal J, Votýpka J, Kokurewicz T, Dundarova H, et al. Trypanosomes in eastern and central European bats. Acta Vet Brno. 2020;89:69–78.
Google Scholar
Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. 2006;19:531–45.
PubMed
PubMed Central
Google Scholar
Baker ML, Schountz T, Wang L-F. Antiviral immune responses of bats: a review. Zoonoses Public Hlth. 2013;60:104–16.
CAS
Google Scholar
He X, Korytář T, Zhu Y, Pikula J, Bandouchova H, Zukal J, et al. Establishment of Myotis myotis cell lines - model for investigation of host-pathogen interaction in a natural host for emerging viruses. PLoS One. 2014;9:e109795.
PubMed
PubMed Central
Google Scholar
Parasuraman S, Raveendran R, Kesavan R. Blood sample collection in small laboratory animals. J Pharmacol Pharmacother. 2010;1:87–93.
CAS
PubMed
PubMed Central
Google Scholar
Pikula J, Bandouchova H, Kovacova V, Linhart P, Piacek V, Zukal J. Reproduction of rescued vespertilionid bats (Nyctalus noctula) in captivity: veterinary and physiological aspects. Vet Clin North Am Exot Anim Pract. 2017;20:665–77.
PubMed
Google Scholar
Heger T, Zukal J, Seidlova V, Nemcova M, Necas D, Papezikova I, et al. Measurement of phagocyte activity in heterotherms. Acta Vet Brno. 2020;89:79–87.
Google Scholar
Wang M, Wright J, Brownlee A, Buswell R. A comparison of approaches to stepwise regression on variables sensitivities in building simulation and analysis. Energ Buildings. 2016;127:313–26.
Google Scholar
Venables WN, Riple BD. Modern applied statistics with S. 4th ed. New York. ISBN 0–387–95457-0: Springer; 2002.
Google Scholar