Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535(7610):65–74.
Article
CAS
Google Scholar
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.
Article
CAS
Google Scholar
Mølbak L, Johnsen K, Boye M, Jensen TK, Johansen M, Møller K, Leser TD. The microbiota of pigs influenced by diet texture and severity of Lawsonia intracellularis infection, Veterinary Microbiology. 2008:128(1–2):96–107.
Article
Google Scholar
Buddington RK, Sangild PT. COMPANION ANIMALS SYMPOSIUM: development of the mammalian gastrointestinal tract, the resident microbiota, and the role of diet in early life. J Anim Sci. 2011;89(5):1506–19.
Article
CAS
Google Scholar
Gillor O, Etzion A, Riley MA. The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol. 2008;81(4):591–606.
Article
CAS
Google Scholar
Schuijt TJ, van der Poll T, de Vos WM, Wiersinga WJ. The intestinal microbiota and host immune interactions in the critically ill. Trends Microbiol. 2013;21(5):221–9.
Article
CAS
Google Scholar
Koboziev I, Reinoso Webb C, Furr KL, Grisham MB. Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic Biol Med. 2014;68:122–33.
Article
CAS
Google Scholar
Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008;6(10):776–88.
Article
CAS
Google Scholar
Schwab C, Cristescu B, Northrup JM, Stenhouse GB, Ganzle M. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One. 2011;6(12):e27905.
Article
CAS
Google Scholar
Navarrete P, Magne F, Araneda C, Fuentes P, Barros L, Opazo R, Espejo R, Romero J. PCR-TTGE analysis of 16S rRNA from rainbow trout (Oncorhynchus mykiss) gut microbiota reveals host-specific communities of active bacteria. PLoS One. 2012;7(2):e31335.
Article
CAS
Google Scholar
Kovács F, Nagy B, Sinkovics G. The gut bacterial flora of healthy early weaned piglets, with special regard to factors influencing its composition. Acta Vet Acad Sci Hung. 1972;22(4):327.
PubMed
Google Scholar
McKenney PT, Pamer EG. From hype to Hope: the gut microbiota in enteric infectious disease. Cell. 2015;163(6):1326–32.
Article
CAS
Google Scholar
Cox LA, Olivier M, Spradlingreeves K, Karere GM, Comuzzie AG, Vandeberg JL. Nonhuman Primates and translational research-cardiovascular disease. ILAR J. 2017;58(2):235–50.
Article
CAS
Google Scholar
Wang XM, Li M, Tang S, Liu Z. A preliminary study of some characters of blue sheep population ecology in spring. Acta Theriologica Sinica. 1998;18(1):27–33.
Google Scholar
Schaller GB. Mountain monarchs. wild sheep and goats of the Himalaya. Chicago: University of Chicago Press; 1977. p. 425.
Google Scholar
Wang XM, Schaller GB. Status of Large Mammals in Western Inner Mongolia, China. Journal of East China Normal University (Special Issue of Mammals). 1996;6:93–104.
Google Scholar
Schaller GB. Wildlife of the Tibetan steppe, vol. 373. Chicago: University of Chicago Press; 1998.
Google Scholar
Liu CG, Zhang SW, Ren JR. Research foods and foods source about snow leopard(Panthera uncia). Journal of Shaanxi No rmal University (Natural Science Edition). 2003;31(S2):154–9.
Google Scholar
Cheng X, Yin X, Xia G, Yu Y, Hou X. Analysis of age structure of blue sheep population. Shaanxi Journal of Agricultural Sciences. 2014;60(08):40–2.
Google Scholar
Liu ZS, Wang XM, Li ZG, Cui DY, Li XQ. Seasonal variation of diurnal activity budgets by blue sheep (Pseudois nayaur) with different age-sex classes in Helan Mountain. Zool Res. 2005;26(4):350–7.
Google Scholar
Zhu M, Zhou C, He Y, Huang Y, Lu D, Zeng X. Exploring the phylogenetic relationships among species of tribe caprini based on mitochondrial Cyt b and nuclear gene ZFY. Acta Theriologica Sinica. 2014;34(4):366–73.
Google Scholar
Cao LR, Wang XM, Fang SG. A molecular phylogeny of Bharal and dwarf blue sheep based on mitochondrial cytochrome b gene sequences. Acta Zool Sin. 2003;49(2):198–204.
CAS
Google Scholar
Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. Practical innovations for high-throughput amplicon sequencing. Nat Methods. 2013;10(10):999–1002.
Article
CAS
Google Scholar
Sundset MA, Praesteng KE, Cann IK, Mathiesen SD, Mackie RI. Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microb Ecol. 2007;54(3):424–38.
Article
Google Scholar
Gruninger RJ, Sensen CW, McAllister TA, Forster RJ. Diversity of rumen bacteria in Canadian cervids. PLoS One. 2014;9(2):e89682.
Article
Google Scholar
Ishaq SL, Wright AD. High-throughput DNA sequencing of the ruminal bacteria from moose (Alces alces) in Vermont, Alaska, and Norway. Microb Ecol. 2014;68(2):185–95.
Article
CAS
Google Scholar
Koike S, Yoshitani S, Kobayashi Y, Tanaka K. Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol Lett. 2003;229(1):23–30.
Article
CAS
Google Scholar
Thoetkiattikul H, Mhuantong W, Laothanachareon T, Tangphatsornruang S, Pattarajinda V, Eurwilaichitr L, Champreda V. Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Curr Microbiol. 2013;67(2):130–7.
Article
CAS
Google Scholar
Chen Y, Penner GB, Li M, Oba M, Guan LL. Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet. Appl Environ Microbiol. 2011;77(16):5770–81.
Article
CAS
Google Scholar
Spence C, Wells WG, Smith CJ. Characterization of the primary starch utilization operon in the obligate anaerobe Bacteroides fragilis: regulation by carbon source and oxygen. J Bacteriol. 2006;188(13):4663–72.
Article
CAS
Google Scholar
Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.
Article
Google Scholar
Sears CL. A dynamic partnership: celebrating our gut flora. Anaerobe. 2005;11(5):247–51.
Article
Google Scholar
Zhao Y. Study on the correlation between antibiotic induced changes in mouse flora and host metabolism: Doctoral dissertation. Huazhong university of science and technology; 2013.
Kang C, Hui SC, Zhu XH, Mi MT: Study on the mechanism of intestinal flora in capsaicin improving the signs of obesity induced by high-fat diet in mice. In: The 13th western China nutrition and health summit BBS: 2018; Chengdu, sichuan, China; 2018: 1.
Bourquin LD, Titgemeyer EC, Fahey GC Jr. Vegetable fiber fermentation by human fecal bacteria: cell wall polysaccharide disappearance and short-chain fatty acid production during in vitro fermentation and water-holding capacity of unfermented residues. J Nutr. 1993;123(5):860–9.
Article
CAS
Google Scholar
Bourquin LD, Titgemeyer EC, Fahey GC. Fermentation of various dietary fiber sources by human fecal bacteria. Nutr Res. 1996;16(7):1119–31.
Article
Google Scholar
Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, Lusis AJ, Knight R, Caporaso JG, Svanbäck R. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun. 2015;5:4500.
Article
Google Scholar
Konturek PC, Haziri D, Brzozowski T, Hess T, Heyman S, Kwiecien S, Konturek SJ, Koziel J. Emerging role of fecal microbiota therapy in the treatment of gastrointestinal and extra-gastrointestinal diseases. J Physiol Pharmacol. 2015;66(4):483–91.
CAS
PubMed
Google Scholar
Rieger MA, Parlesak A, Pool-Zobel BL, Rechkemmer G, Bode C. A diet high in fat and meat but low in dietary fibre increases the genotoxic potential of 'faecal water'. Carcinogenesis. 1999;20(12):2311–6.
Article
CAS
Google Scholar
Zhang Y: Antibiotics-induced mice microbial alteration and their relationship with host metabolic profiles. Master's thesis. Shandong Normal University; 2018.
Luo M, Liu Y, Wu P, Luo DX, Sun Q, Zheng H, Hu R, Pandol SJ, Li QF, Han YP. Alternation of gut microbiota in patients with pulmonary tuberculosis. Front Physiol. 2017;8(822).
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet Journal. 2011;17(1).
Article
Google Scholar
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):2194–200.
Article
CAS
Google Scholar
Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, et al. Chimeric 16S rRNA sequence formation and detection in sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011;21(3):494–504.
Article
CAS
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8.
Article
CAS
Google Scholar
Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10(1):57–9.
Article
CAS
Google Scholar