Duim B, Verstappen KM, Broens EM, Laarhoven LM, van Duijkeren E, Hordijk J, et al. Changes in the population of methicillin-resistant Staphylococcus pseudintermedius and dissemination of antimicrobial-resistant phenotypes in the Netherlands. J Clin Microbiol. 2016;54:283–8. https://doi.org/10.1128/JCM.01288-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gronthal T, Eklund M, Thomson K, Piiparinen H, Sironen T, Rantala M. Antimicrobial resistance in Staphylococcus pseudintermedius and the molecular epidemiology of methicillin-resistant S. pseudintermedius in small animals in Finland. J Antimicrob Chemother. 2017;72:1021–30. https://doi.org/10.1093/jac/dkw559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pomba C, Rantala M, Greko C, Baptiste KE, Catry B, van Duijkeren E, et al. Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother. 2016;72:957–68. https://doi.org/10.1093/jac/dkw481.
Article
CAS
Google Scholar
Miragaia M. Factors contributing to the evolution of mecA-mediated β-lactam resistance in staphylococci: update and new insights from whole genome sequencing (WGS). Front Microbiol. 2018;9:2723. https://doi.org/10.3389/fmicb.2018.02723.
Article
PubMed
PubMed Central
Google Scholar
International Working Group on the classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother. 2009;53:4961–7. https://doi.org/10.1128/AAC.00579-09.
Article
CAS
Google Scholar
Liu J, Chen D, Peters BM, Li L, Li B, Xu Z, et al. Staphylococcal chromosomal cassettes mec (SCCmec): a mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb Pathog. 2016;101:56–67. https://doi.org/10.1016/j.micpath.2016.10.028.
Article
CAS
PubMed
Google Scholar
Shore AC, Deasy EC, Slickers P, Brennan G, O'Connell B, Monecke S, et al. Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecR1, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55:3765–73. https://doi.org/10.1128/AAC.00187-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Worthing KA, Schwendener S, Perreten V, Saputra S, Coombs GW, Pang S, et al. Characterization of staphylococcal cassette chromosome mec elements from methicillin-resistant Staphylococcus pseudintermedius infections in Australian animals. mSphere. 2018;3:e00491–18. https://doi.org/10.1128/mSphere.00491-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bemis DA, Jones RD, Frank LA, Kania SA. Evaluation of susceptibility test breakpoints used to predict mecA-mediated resistance in Staphylococcus isolated from dogs. J Vet Diagn Investig. 2009;21:53–8. https://doi.org/10.1177/104063870902100108.
Article
Google Scholar
Bemis DA, Jones RD, Videla R, Kania SA. Evaluation of cefoxitin disk diffusion breakpoint for detection of methicillin resistance in Staphylococcus pseudintermedius isolates from dogs. J Vet Diagn Investig. 2012;24:964–7. https://doi.org/10.1177/1040638712452112.
Article
Google Scholar
Vigo GB, Giacoboni GI, Gagetti PS, Pasteran FG, Corso AC. Antimicrobial resistance and molecular epidemiology of Staphylococcus pseudintermedius strains isolated from dog clinical samples. Rev Argent Microbiol. 2015;47:206–11. https://doi.org/10.1016/j.ram.2015.06.002.
Article
PubMed
Google Scholar
Giacoboni GI, Vinocur F, Fauret N, Grandinetti J, Manzuc P. Detection of Staphylococcus pseudintermedius resistant to methicillin and to other antimicrobials commonly used in canine pyodermias. Analecta Vet. 2017;37:19–24. https://doi.org/10.24215/15142590e012.
Article
Google Scholar
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81. https://doi.org/10.1111/j.1469-0691.2011.03570.x.
Article
CAS
PubMed
Google Scholar
Kaya H, Hasman H, Larsen J, Stegger M, Johannesen TB, Allesøe RL, et al. SCCmecFinder, a web-based tool for typing of staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere. 2018;3:e00612–7. https://doi.org/10.1128/mSphere.00612-17.
Article
PubMed
PubMed Central
Google Scholar
Paul NC, Moodley A, Ghibaudo G, Guardabassi L. Carriage of methicillin-resistant Staphylococcus pseudintermedius in small animal veterinarians: indirect evidence of zoonotic transmission. Zoonoses Public Health. 2011;58:533–9. https://doi.org/10.1111/j.1863-2378.2011.01398.x.
Article
CAS
PubMed
Google Scholar
Wu MT, Burnham CA, Westblade LF, Dien Bard J, Lawhon SD, Wallace MA, et al. Evaluation of oxacillin and cefoxitin disk and MIC breakpoints for prediction of methicillin resistance in human and veterinary isolates of Staphylococcus intermedius group. J Clin Microbiol. 2016;54:535–42. https://doi.org/10.1128/JCM.02864-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosato AE, Kreiswirth BN, Craig WA, Eisner W, Climo MW, Archer GL. mecA-blaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother. 2003;47:1460–3. https://doi.org/10.1128/AAC.47.4.1460-1463.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kadlec K, Schwarz S. Antimicrobial resistance of Staphylococcus pseudintermedius. Vet Dermatol. 2012;23:276–82. https://doi.org/10.1111/j.1365-3164.2012.01056.x.
Article
PubMed
Google Scholar
Norstrom M, Sunde M, Tharaldsen H, Mørk T, Bergsjø B, Kruse H. Antimicrobial resistance in Staphylococcus pseudintermedius in the Norwegian dog population. Microb Drug Resist. 2009;15:55–9. https://doi.org/10.1089/mdr.2009.0865.
Article
CAS
PubMed
Google Scholar
Gold RM, Cohen ND, Lawhon SD. Amikacin resistance in Staphylococcus pseudintermedius isolated from dogs. J Clin Microbiol. 2014;52:3641–6. https://doi.org/10.1128/JCM.01253-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Descloux S, Rossano A, Perreten V. Characterization of new staphylococcal cassette chromosome mec (SCCmec) and topoisomerase genes in fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius. J Clin Microbiol. 2008;46:1818–23. https://doi.org/10.1128/JCM.02255-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Onuma K, Tanabe T, Sato H. Antimicrobial resistance of Staphylococcus pseudintermedius isolates from healthy dogs and dogs affected with pyoderma in Japan. Vet Dermatol. 2012;23:17–22. https://doi.org/10.1111/j.1365-3164.2011.00995.x.
Article
PubMed
Google Scholar
Gomez-Sanz E, Torres C, Lozano C, Sáenz Y, Zarazaga M. Detection and characterization of methicillin-resistant Staphylococcus pseudintermedius in healthy dogs in La Rioja, Spain. Immunol Microbiol Infect Dis. 2011;34:447–53. https://doi.org/10.1016/j.cimid.2011.08.002.
Article
Google Scholar
Wegener A, Broens EM, Zomer A, Spaninks M, Wagenaar JA, Duim B. Comparative genomics of phenotypic antimicrobial resistances in methicillin-resistant Staphylococcus pseudintermedius of canine origin. Vet Microbiol. 2018;225:125–31. https://doi.org/10.1016/j.vetmic.2018.09.013.
Article
CAS
PubMed
Google Scholar
Perreten V, Chanchaithong P, Prapasarakul N, Rossano A, Blum SE, Elad D, et al. Novel pseudo-staphylococcal cassette chromosome mec element (ψSCCmec57395) in methicillin-resistant Staphylococcus pseudintermedius CC45. Antimicrob Agents Chemother. 2013;57:5509–15. https://doi.org/10.1128/AAC.00738-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perreten V, Kadlec K, Schwarz S, Gronlund Andersson U, Finn M, Greko C, et al. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: an international multicentre study. J Antimicrob Chemother. 2010;65:1145–54. https://doi.org/10.1093/jac/dkq078.
Article
CAS
PubMed
Google Scholar
Ishihara K, Shimokubo N, Sakagami A, Ueno H, Muramatsu Y, Kadosawa T, et al. Occurrence and molecular characteristics of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus in academic veterinary hospital. Apppl Environ Microbiol. 2010;25:5165–74. https://doi.org/10.1128/AEM.02780-09.
Article
CAS
Google Scholar
Kasai T, Saegusa S, Shirai M, Murakami M, Kato Y. New categories designated as healthcare-associated and community-associated methicillin-resistant Staphylococcus pseudintermedius in dogs. Microbiol Immunol. 2016;60:540–51. https://doi.org/10.1111/1348-0421.12401.
Article
CAS
PubMed
Google Scholar
Pires dos Santos T, Damborg P, Moodley A, Guardabassi L. Systematic review on global epidemiology of methicillin-resistant Staphylococcus pseudintermedius: inference of population structure from multilocus sequence typing data. Front Microbiol. 2016;7:1599. https://doi.org/10.3389/fmicb.2016.01599.
Article
PubMed
PubMed Central
Google Scholar
McCarthy AJ, Harrison EM, Stanczak-Mrozek K, Leggett B, Waller A, Holmes MA, et al. Genomic insights into the rapid emergence and evolution of MDR in Staphylococcus pseudintermedius. J Antimicrob Chemother. 2015;70:997–1007. https://doi.org/10.1093/jac/dku496.
Article
CAS
PubMed
Google Scholar
Quitoco IM, Ramundo MS, Silva-Carvalho MC, Souza RR, Beltrame CO, de Oliveira TF, et al. First report in South America of companion animal colonization by the USA1100 clone of community-acquired meticillin-resistant Staphylococcus aureus (ST30) and by the European clone of methicillin-resistant Staphylococcus pseudintermedius (ST71). BMC Res Notes. 2013;6:336. https://doi.org/10.1186/1756-0500-6-336.
Article
PubMed
PubMed Central
Google Scholar
Clinical and Laboratory Standards Institute (CLSI). VET01-S 3rd Edition. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. Wayne, PA, USA; 2015.
Clinical Laboratory Standards Institute (CLSI). M100S 27th Edition: performance standards for antimicrobial susceptibility testing. Clinical Laboratory Standards Institute, Wayne, PA, USA. 2017.
Fernandez R, Paz LI, Rosato RR, Rosato AE. Ceftaroline is active against heteroresistant methicillin-resistant Staphylococcus aureus clinical strains despite associated mutational mechanisms and intermediate levels of resistance. Antimicrob Agents Chemother. 2014;58:5736–46. https://doi.org/10.1128/AAC.03019-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vannuffel P, Gigi J, Ezzedine H, Vandercam B, Delmee M, Wauters G, et al. Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR. J Clin Microbiol. 1995;33:2864–7 PMCID: PMC228596 PMID: 8576335.
CAS
PubMed
PubMed Central
Google Scholar
Milheirico C, Oliveira DC, de Lencastre H. Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus. Antimicrob Agents Chemother. 2007;51:3374–7. https://doi.org/10.1128/AAC.00275-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyle-Vavra S, Ereshefsky B, Wang CC, Daum RS. Successful multiresistant community-associated methicillin-resistant Staphylococcus aureus lineage from Taipei, Taiwan, that carries either the novel staphylococcal chromosome cassette mec (SCCmec) type VT or SCCmec type IV. J Clin Microbiol. 2005;43:4719–30. https://doi.org/10.1128/JCM.43.9.4719-4730.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF. BLAST algorithm. 2001.
Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res. 2016;45(D1):D535–42. https://doi.org/10.1093/nar/gkw1017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2013;42(D1):D206–14. https://doi.org/10.1093/nar/gkt1226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wattam AR, Gabbard JL, Shukla M, Sobral BW. Comparative genomic analysis at the PATRIC, a bioinformatic resource center, in Host-Bacteria Interactions Methods. Mol Biol. 2014;1197:287–308. https://doi.org/10.1007/978-1-4939-1261-2_17.
Article
Google Scholar
Chung M, de Lencastre H, Matthews P, Tomasz A. The multilaboratory project collaborators. Molecular typing of methicillin resistant Staphylococcus aureus (MRSA) by pulsed field gel electrophoresis: comparison of results obtained in a multilaboratory effort using identical protocols and MRSA strains. Microb Drug Resis. 2000;6:189–98. https://doi.org/10.1089/mdr.2000.6.189.
Article
CAS
Google Scholar
Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33:2233–9 PMCID: PMC228385 PMID: 7494007.
CAS
PubMed
PubMed Central
Google Scholar
Davis JJ, Gerdes S, Olsen GJ, Olson R, Pusch GD, Shukla M, et al. PATtyFams: protein families for the microbial genomes in the PATRIC database. Front Microbiol. 2016;7:118. https://doi.org/10.3389/fmicb.2016.00118.
Article
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. https://doi.org/10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–3. https://doi.org/10.1093/bioinformatics/btp163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. https://doi.org/10.1093/bioinformatics/btu033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis AP, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 2008;57:758–71. https://doi.org/10.1080/10635150802429642.
Article
PubMed
Google Scholar
Rambaut A. FigTree, a graphical viewer of phylogenetic trees. 2007.