Nagy N, Goldstein AM. Enteric nervous system development: a crest cell's journey from neural tube to colon. Semin Cell Dev Biol. 2017;66:94–106.
Article
Google Scholar
Furness JB. Integrated neural and endocrine control of gastrointestinal function. Adv Exp Med Biol. 2016;891:159–73.
Article
CAS
Google Scholar
Charrier B, Pilon N. Toward a better understanding of enteric gliogenesis. Neurogenesis (Austin). 2017;4(1):e1293958.
Article
Google Scholar
Hao MM, Young HM. Development of enteric neuron diversity. J Cell Mol Med. 2009;13:1193–210.
Article
CAS
Google Scholar
Furness JB. Types of neurons in the enteric nervous system. J Auton Nerv Syst. 2000;81:87–96.
Article
CAS
Google Scholar
Boeckxstaens GE. Understanding and controlling the enteric nervous system. Best Pract Res Clin Gastroenterol. 2002;16:1013–23.
Sang Q, Young HM. Chemical coding of neurons in the myenteric plexus and external muscle of the small and large intestine of the mouse. Cell Tissue Res. 1996;284:39–53.
Article
CAS
Google Scholar
Hansen MB. The enteric nervous system I: organisation and classification. Pharmacol Toxicol. 2003;92:105–13.
Article
CAS
Google Scholar
Timmermans JP, Hens J, Adriaensen D. Outer submucous plexus: an intrinsic nerve network involved in both secretory and motility processes in the intestine of large mammals and humans. Anat Rec. 2001;262:71–8.
Article
CAS
Google Scholar
Timmermans JP, Scheuermann DW, Stach W, et al. Functional morphology of the enteric nervous system with special reference to large mammals. Eur J Morphol. 1992;30:113–22.
CAS
PubMed
Google Scholar
Balemba OB, Hay-Schmidt A, Assey RJ, et al. An immunohistochemical study of the organization of ganglia and nerve fibres in the mucosa of the porcine intestine. Anat Histol Embryol. 2002;31:237–46.
Article
CAS
Google Scholar
Balemba OB, Mbassa GK, Semuguruka WD, et al. The topography, architecture and structure of the enteric nervous system in the jejunum and ileum of cattle. J Anat. 1999;195:1–9.
Article
Google Scholar
Hirschsprung H. Stuhltragheit Neugeborener in Folge von Dilatation und Hypertrophie des Colons. Jhrb f Kinderh. 1888;27:1–7.
Google Scholar
Fiori MG. Domenico Battini and his description of congenital megacolon: a detailed case report one century before Hirschsprung. J Peripher Nerv Syst. 1998;3:197–206.
CAS
PubMed
Google Scholar
Cass D. Hirschsprung’s disease: an historical review. Prog Pediatr Surg. 1986;20:199–214.
Article
CAS
Google Scholar
Sergi C. Hirschsprung's disease: historical notes and pathological diagnosis on the occasion of the 100(th) anniversary of Dr. Harald Hirschsprung's death. World J Clin Pediatr. 2015;4:120–5.
Article
Google Scholar
Rayhorn NJ, Ingebo KR. Aganglionosis of the small intestine: a rare form of Hirschsprung's disease. Gastroenterol Nurs. 1999;22:164–6.
Article
CAS
Google Scholar
Badizadegan K, Thomas AR, Nagy N, et al. Presence of intramucosal neuroglial cells in normal and aganglionic human colon. Am J Physiol Gastrointest Liver Physiol. 2014;307:G1002–12.
Article
CAS
Google Scholar
Morris G, Kennedy A Jr, Cochran W. Small bowel congenital anomalies: a Review and Update. Curr Gastroenterol Rep. 2016;18:16.
Article
Google Scholar
Erten EE, Çavuşoğlu YH, Arda N, et al. A rare case of multiple skip segment Hirschsprung's disease in the ileum and colon. Pediatr Surg Int. 2014;30:349–51.
Article
Google Scholar
Doi T, O'Donnell AM, McDermott M, et al. Skip segment Hirschsprung's disease: a rare phenomenon. Pediatr Surg Int. 2011;27:787–9.
Article
Google Scholar
Yunis E, Sieber WK, Akers DR. Does zonal aganglionosis really exist? Report of a rare variety of Hirschsprung's disease and review of the literature. Pediatr Pathol. 1983;1:33–49.
Article
CAS
Google Scholar
Tam PK, Garcia-Barceló M. Genetic basis of Hirschsprung’s disease. Pediatr Surg Int. 2009;25:543–58.
Article
Google Scholar
Borrego S, Ruiz-Ferrer M, Fernández RM, et al. Hirschsprung’s disease as a model of complex genetic etiology. Histol Histopathol. 2013;28:1117–36.
CAS
PubMed
Google Scholar
Arnold S, Pelet A, Amiel J, et al. Interaction between a chromosome 10 RET enhancer and chromosome 21 in the Down syndrome-Hirschsprung disease association. Hum Mutat. 2009;30:771–5.
Article
CAS
Google Scholar
Shim WK, Derieg M, Powell BR, et al. Near-total intestinal aganglionosis in the Waardenburg-Shah syndrome. J Pediatr Surg. 1999;34:1853–5.
Article
CAS
Google Scholar
Duess JW, Puri P. Syndromic Hirschsprung's disease and associated congenital heart disease: a systematic review. Pediatr Surg Int. 2015;31:781–5.
Article
Google Scholar
Fewtrell MS, Tam PK, Thomson AH, et al. Hirschsprung's disease associated with a deletion of chromosome 10 (q11.2q21.2): a further link with the neurocristopathies? J Med Genet. 1994;31:325–7.
Article
CAS
Google Scholar
Edery P, Lyonnet S, Mulligan LM, et al. Mutations of the RET proto-oncogene in Hirschsprung's disease. Nature. 1994;367:378–80.
Article
CAS
Google Scholar
Bordeaux MC, Forcet C, Granger L, et al. The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J. 2000;19:4056–63.
Article
CAS
Google Scholar
Shanske A, Ferreira JC, Leonard JC, et al. Hirschsprung disease in an infant with a contiguous gene syndrome of chromosome 13. Am J Med Genet. 2001;102:231–6.
Article
CAS
Google Scholar
Hofstra RM, Valdenaire O, Arch E, et al. A loss-of-function mutation in the endothelin-converting enzyme 1 (ECE-1) associated with Hirschsprung disease, cardiac defects, and autonomic dysfunction. Am J Hum Genet. 1999;64:304–8.
Article
CAS
Google Scholar
Bär KJ, Facer P, Williams NS, et al. Glial-derived neurotrophic factor in human adult and fetal intestine and in Hirschsprung’s disease. Gastroenterology. 1997;112:1381–5.
Article
Google Scholar
Martucciello G, Thompson H, Mazzola C, et al. GDNF deficit in Hirschsprung's disease. J Pediatr Surg. 1998;33:99–102.
Article
CAS
Google Scholar
Moore SW, Zaahl MG. Association of endothelin-beta receptor (EDNRB) gene variants in anorectal malformations. J Pediatr Surg. 2007;42:1266–70.
Article
Google Scholar
Inoue K, Shimotake T, Iwai N. Mutational analysis of RET/GDNF/NTN genes in children with total colonic aganglionosis with small bowel involvement. Am J Med Genet. 2000;93:278–84.
Article
CAS
Google Scholar
Stanchina L, Baral V, Robert F, et al. Interactions between Sox10, Edn3 and Ednrb during enteric nervous system and melanocyte development. Dev Biol. 2006;295:232–49.
Article
CAS
Google Scholar
Tomiyama H, Shimotake T, Ono S, et al. Relationship between the type of RET/GDNF/NTN or SOX10 gene mutations and long-term results after surgery for total colonic aganglionosis with small bowel involvement. J Pediatr Surg. 2001;36:1685–8.
Article
CAS
Google Scholar
Roe KA, Syme HM, Brooks HW. Congenital large intestinal hypoganglionosis in a domestic shorthair kitten. J Feline Med Surg. 2010;12:418–20.
Article
Google Scholar
Stockhofe-Zurwieden N, Buijs RM, De Jong M. Megacolon in pigs due to segmental colon aganglionosis. Dtsch Tierarztl Wochenschr. 2001;108:267–9.
CAS
PubMed
Google Scholar
Brann L, Furtado D, Migliazzo CV, et al. Secondary effects of aganglionosis in the piebald-lethal mouse model of Hirschsprung's disease. Lab Anim Sci. 1977;27:946–54.
CAS
PubMed
Google Scholar
Hotta R, Cheng LS, Graham HK, et al. Isogenic enteric neural progenitor cells can replace missing neurons and glia in mice with Hirschsprung disease. Neurogastroenterol Motil. 2016;28:498–512.
Article
CAS
Google Scholar
Rosin E, Walshaw R, Mehlhaff C, et al. Subtotal colectomy for treatment of chronic constipation associated with idiopathic megacolon in cats: 38 cases (1979-1985). J Am Vet Med Assoc. 1988;193:850–3.
CAS
PubMed
Google Scholar
Goldstein AM, Hofstra RM, Burns AJ. Building a brain in the gut: development of the enteric nervous system. Clin Genet. 2013;83:307–16.
Article
CAS
Google Scholar
Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol. 2013;305:G1–G24.
Article
CAS
Google Scholar
Hoehner JC, Wester T, Påhlman S, et al. Alterations in neurotrophin and neurotrophin-receptor localization in Hirschsprung's disease. J Pediatr Surg. 1996;31:1524–9.
Article
CAS
Google Scholar
Kuroda T, Ueda M, Nakano M, et al. Altered production of nerve growth factor in aganglionic intestines. J Pediatr Surg. 1994;29:288–93.
Article
CAS
Google Scholar
Chalazonitis A. Neurotrophin-3 in the development of the enteric nervous system. Prog Brain Res. 2004;146:243–63.
Article
CAS
Google Scholar
Louw JH, Barnard CN. Congenital intestinal atresia; observations on its origin. Lancet. 1955;269(6899):1065–7.
Article
CAS
Google Scholar
Louw JH. Congenital intestinal atresia and stenosis in the newborn. Observations on its pathogenesis and treatment. Ann R Coll Surg Engl. 1959;25:209–34.
CAS
PubMed
PubMed Central
Google Scholar
van der Gaag I, Tibboel D. Intestinal atresia and stenosis in animals: a report of 34 cases. Vet Pathol. 1980;17:565–74.
Article
Google Scholar
Uzal FA, Plattner BL, Hostettter JM. Pathology of domestic animals. In Jubb, Kennedy & Palmer's. ed. Elsevier. 6th ed. London: Saunders Ltd; 2016. p. 904–5.
Google Scholar
Memarzadeh M, Talebi A, Edalaty M, et al. Hirschsprung’s disease diagnosis: comparison of immunohistochemical, hematoxilin and eosin staining. J Indian Assoc Pediatr Surg. 2009;14:59–62.
Article
Google Scholar
Morales A, Morimoto S, Vilchis F, et al. Molecular expression of vascular endothelial growth factor, prokineticin receptor-1 and other biomarkers in infiltrating canalicular carcinoma of the breast. Oncol Lett. 2016;12:2720–7.
Article
CAS
Google Scholar
Ciaputa R, Nowak M, Madej JA, et al. Inhibin-α, E-cadherin, calretinin and Ki-67 antigen in the immunohistochemical evaluation of canine and human testicular neoplasms. Folia Histochem Cytobiol. 2014;52:326–34.
Article
Google Scholar
Johnston HM, Thompson H, Pirie HM. p53 immunohistochemistry in domestic animal tumours. Eur J Vet Pathol. 1996;2:135–40.
Google Scholar
Piñeyro P, Vieson MD, Ramos-Vara JA, et al. Histopathological and immunohistochemical findings of primary and metastatic medullary thyroid carcinoma in a young dog. J Vet Sci. 2014;15:449–53.
Article
Google Scholar
Akihisa S, Tetsuya S. Intestinal gastrointestinal stromal tumor in a cat. J Vet Med Sci. 2017;79:562–6.
Article
Google Scholar
Hugen S, Thomas RE, German AJ, et al. Gastric carcinoma in canines and humans, a review. Vet Comp Oncol. 2016;15:692–705.
Article
Google Scholar
Tam PK, Lister J. Development profile of neuron-specific enolase in human gut and its implications in Hirschsprung’s disease. Gastroenterology. 1986;90:1901–6.
Article
CAS
Google Scholar
Marangos PJ, Polak JM, Pearse AGE. Neuron-specific enolase: A probe for neurons and neuroendocrine cells. Trends Neurosci. 1982;5:193–6.
Metallinos DL, Bowling AT, Rine J. A missense mutation in the endothelin-B receptor gene is associated with lethal white foal syndrome: an equine version of Hirschsprung disease. Mamm Genome. 1998;9:426–31.
Article
CAS
Google Scholar
Washabau RJ, Holt D. Pathogenesis, diagnosis, and therapy of feline idiopathic megacolon. Vet Clin North Am Small Anim Pract. 1999;29:589–603.
Article
CAS
Google Scholar
Washabau R, Stalis I. Alterations in colonic smooth muscle function in cats with idiopathic megacolon. Am J Vet Res. 1996;57:580–6.
CAS
PubMed
Google Scholar
Le Douarin NM, Teillet MA. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol. 1973;30:31–48.
PubMed
Google Scholar
Le Douarin N, Teillet MA. Origin of intramural ganglionic system cells of the digestive tract of bird embryos. CR Acad Sci Hebd Seances Acad Sci D. 1971;273:1411–4.
Google Scholar
Green SA, Uy BR, Bronner ME. Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest. Nature. 2017;544(7648):88–91.
Article
CAS
Google Scholar
Forzán MJ, McClure JT. Congenital aganglionosis in a 3-day-old Holstein calf. Can Vet J. 2005;46:342–4.
PubMed
PubMed Central
Google Scholar
Lighbody T. Foal with overo lethal white syndrome born to a registered quarter horse mare. Can Vet J. 2002;43:715–7.
Google Scholar
Swaminathan M, Kapur RP. Counting myenteric ganglion cells in histologic sections: an empirical approach. Hum Pathol. 2010;41:1097–108.
Article
Google Scholar
Anbardar MH, Geramizadeh B, Foroutan HR. Evaluation of Calretinin as a new marker in the diagnosis of Hirschsprung disease. Iran J Pediatr. 2015;25:e367.
Article
Google Scholar
Jiang M, Li K, Li S, et al. Calretinin, S100 and protein gene product 9.5 immunostaining of rectal suction biopsies in the diagnosis of Hirschsprung’ disease. Am J Transl Res. 2016;8:3159–68 eCollection 2016.
CAS
PubMed
PubMed Central
Google Scholar